留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对称槽道涡波流场流动特征的POD分析

刘阁 邓阳琴 金兴 陈彬

刘阁, 邓阳琴, 金兴, 等. 对称槽道涡波流场流动特征的POD分析[J]. 强激光与粒子束, 2018, 30: 069002. doi: 10.11884/HPLPB201830.170480
引用本文: 刘阁, 邓阳琴, 金兴, 等. 对称槽道涡波流场流动特征的POD分析[J]. 强激光与粒子束, 2018, 30: 069002. doi: 10.11884/HPLPB201830.170480
Liu Ge, Deng Yangqin, Jin Xing, et al. Analysis on flow characteristics of vortex wave flow field within symmetric channel using proper orthogonal decomposition technology[J]. High Power Laser and Particle Beams, 2018, 30: 069002. doi: 10.11884/HPLPB201830.170480
Citation: Liu Ge, Deng Yangqin, Jin Xing, et al. Analysis on flow characteristics of vortex wave flow field within symmetric channel using proper orthogonal decomposition technology[J]. High Power Laser and Particle Beams, 2018, 30: 069002. doi: 10.11884/HPLPB201830.170480

对称槽道涡波流场流动特征的POD分析

doi: 10.11884/HPLPB201830.170480
基金项目: 

国家自然科学基金项目 51375516

重庆基础与前沿研究项目 cstc2016jcyjA0185

详细信息
    作者简介:

    刘阁(1973—), 女,副教授,主要从事传质分离及激光检测方面的研究;lycy9945@163.com

    通讯作者:

    陈彬(1972—),男,博士,教授,主要从事激光应用及流体动力学研究;hustchb@163.com

  • 中图分类号: TH741; O357.43

Analysis on flow characteristics of vortex wave flow field within symmetric channel using proper orthogonal decomposition technology

  • 摘要: 为深入分析层流状态下对称槽道内涡波流场的流动特性及其变化规律,对流场进行了二维粒子图像测速(2DPIV)测量获取瞬态速度矢量数据,利用本征正交分解(POD)技术进行模态分解以及涡波流场的重构,然后根据重构的流场对对称槽道内涡波流场进行了平均速度剖面、流场脉动强度以及特征点的速度和频谱分布等方面的分析。结果表明:POD的前15阶模态能够表征涡波流场的主导结构,第1,3阶模态主要表现为一对旋向相反的涡对特征,第2阶模态具有涡旋和波状主流的特征;提取了5个涡旋涡核的位置作为流场流动特性的特征点;根据POD重构流场分析发现流向平均速度呈抛物线形状分布,法向平均速度呈对称分布特征;流向脉动强度受壁面的影响较大,法向脉动强度呈现抛物线形状分布;距离中心主流较近的1#,4#,5#特征点的速度脉动程度受主流的脉动强度影响较大,速度的脉动主频0.15 Hz与次频、流场的自然频率0.35 Hz共同影响特征点的速度分布;2#,3#特征点的流向速度呈衰减趋势,法向速度在初期幅度变化较大。
  • 图  1  2D PIV实验装置

    Figure  1.  2D PIV experimental device

    图  2  POD分解的各阶模态能量分布图

    Figure  2.  Distribution of each mode energy of decomposition proper orthogonal(POD)

    图  3  POD分解的前3阶模态的速度矢量场和涡量分布图

    Figure  3.  Distribution of velocity vector field and vorticity of the first 3 modes of POD

    图  4  流场平均速度的剖面曲线

    Figure  4.  Curve of mean velocity in flow field

    图  5  流场脉动强度的分布

    Figure  5.  Distribution of flow intensity

    图  6  (0.4, 0.23)1#特征点的速度分布

    Figure  6.  Velocity distribution of the point (0.4, 0.23)1#

    图  7  (1.45, 0.35)2#特征点的速度分布

    Figure  7.  Velocity distribution of the point (1.45, 0.35)2#

    图  8  (0.81, 0.4)3#特征点的速度分布

    Figure  8.  Velocity distribution of the point (0.81, 0.4)3#

    图  9  (0.64, 0.18)4#特征点的速度分布

    Figure  9.  Velocity distribution of the point (0.64, 0.18)4#

    图  10  (0.24, 0.18)5#特征点的速度分布

    Figure  10.  Velocity distribution of the point (0.24, 0.18)5#

  • [1] Bellhouse B J, Bellhouse F H, Curl C M, et al. A high efficiency membrane oxygenator and pulsatile pumping system and its application to animal trials[J]. Transactions American Society for Artificial Internal Organs, 1973, 19(1): 72-79. doi: 10.1097/00002480-197301900-00014
    [2] Nishimura T, Matsune S. Vortices and wall shear stresses in asymmetric and symmetric channels with sinusoidal wavy walls for pulsatile flow at low Reynolds numbers[J]. International Journal of Heat and Fluid Flow, 1998, 19(6): 583-593. doi: 10.1016/S0142-727X(98)10005-X
    [3] Iwai H, Nakabe K, Suzuki K. Flow and heat transfer characteristics of backward-facing step laminar flow in a rectangular duct[J]. International Journal of Heat & Mass Transfer, 2000, 43(3): 457-471.
    [4] Koodziej J A, Grabski J K. Application of the method of fundamental solutions and the radial basis functions for viscous laminar flow in wavy channel[J]. Engineering Analysis with Boundary Elements, 2015, 57(27): 58-65.
    [5] Lin C, Yu S, Wong W, et al. Velocity characteristics in boundary layer flow caused by solitary wave traveling over horizontal bottom[J]. Experimental Thermal and Fluid Science, 2016, 76: 238-252. doi: 10.1016/j.expthermflusci.2016.03.019
    [6] 胡岳, 张涛. 分离涡流场数值仿真的参数影响研究[J]. 机械工程学报, 2016, 52(12): 165-172. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612022.htm

    Hu Yue, Zhang Tao. Research on the effects of numerical simulation parameters of separation vortex flow field. Journal of Mechanical Engineering, 2016, 52(12): 165-172 https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201612022.htm
    [7] 李根生, 宋剑. 双射流流动特性数值模拟和PIV实验研究[J]. 自然科学进展, 2004, 14(12): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200412015.htm

    Li Gensheng, Song Jian. Study on numerical simulation and PIV experimental flow characteristics of two jets. Progress in Natural Science, 2004, 14(12): 99-103 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJZ200412015.htm
    [8] Calabriso A, Borello D, Romano G P, et al. Bubbly flow mapping in the anode channel of a direct methanol fuel cell via PIV investigation[J]. Applied Energy, 2017, 185(2): 1245-1255.
    [9] Ma L, Feng L, Pan C, et al. Fourier mode decomposition of PIV data[J]. Science China Technological Sciences, 2015, 58(11): 1935-1948. doi: 10.1007/s11431-015-5908-y
    [10] 王洪平, 高琪, 王晋军. 基于层析PIV的湍流边界层涡结构统计研究[J]. 中国科学: 物理学 力学 天文学, 2015, 45: 124707. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512008.htm

    Wang Hongping, Gao Qi, Wang Jinjun. The statistical study of vortex structure in turbulent boundary layer flow based on tomographic PIV. Science Sinica Physica, Machanica & Astronomica, 2015, 45: 124707 https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK201512008.htm
    [11] Buhl S, Hartmann F, Hasse C. Identification of large-scale structure fluctuations in IC engines using POD-based conditional averaging[J]. Oil & Gas Science and Technology, 2016, 71(1): 1-10.
    [12] Wei Z, Zang B, New T H, et al. A proper orthogonal decomposition study on the unsteady flow behaviour of a hydrofoil with leading-edge tubercles[J]. Ocean Engineering, 2016, 121: 356-368.
    [13] 罗佳奇, 段焰辉, 夏振华. 基于自适应本征正交分解混合模型的跨音速流场分析[J]. 物理学报, 2016, 65: 124702. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201612022.htm

    Luo Jiaqi, Duan Yanhui, Xia Zhenhua. Transonic flow reconstruction by an adaptive proper orthogonal decomposition hybrid model. Acta Physica Sinica, 2016, 65: 124702 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201612022.htm
    [14] Peng D, Wang S, Liu Y. Fast PSP measurements of wall-pressure fluctuation in low-speed flows: improvements using proper orthogonal decomposition[J]. Experiments in Fluids, 2016, 57(4): 1-17.
    [15] Abiev R S, Galushko A S. Hydrodynamics of pulsating flow type apparatus: Simulation and experiments[J]. Chemical Engineering Journal, 2013, 229(4): 285-295.
    [16] Peter S, Heil M, Sarahl W, et al. Sloshing and slamming oscillations in collapsible channel flow[J]. Journal of Fluid Mechanics, 2010, 662(7): 288-319.
    [17] Sobey I J. Observation of waves during oscillation channel flow[J]. Journal of Fluid Mechanics, 1985, 151: 395-426.
    [18] Ghadi S, Esmailpour K, Hosseinalipour S M, et al. Experimental study of formation and development of coherent vortical structures in pulsed turbulent impinging jet[J]. Experimental Thermal and Fluid Science, 2016, 74(6): 382-389.
    [19] Eschmann G, Kuntze A, Uffrecht W, et al. Experimental and numerical investigation of heat transfer coefficients in gaseous impinging jets—First test of a recent sensor concept for steady and unsteady flow[J]. International Journal of Thermal Sciences, 2015, 96(10): 290-304.
    [20] Deshmukh A, Vasava V, Patankar A, et al. Particle velocity distribution in a flow of gas-solid mixture through a horizontal channel[J]. Powder Technology, 2016, 298(9): 119-129.
  • 加载中
图(10)
计量
  • 文章访问数:  791
  • HTML全文浏览量:  121
  • PDF下载量:  100
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-24
  • 修回日期:  2018-03-05
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回