留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

熔融石英玻璃无水环境固结磨粒抛光特性

刘文俊 杨炜 郭隐彪

刘文俊, 杨炜, 郭隐彪. 熔融石英玻璃无水环境固结磨粒抛光特性[J]. 强激光与粒子束, 2018, 30: 082001. doi: 10.11884/HPLPB201830.180028
引用本文: 刘文俊, 杨炜, 郭隐彪. 熔融石英玻璃无水环境固结磨粒抛光特性[J]. 强激光与粒子束, 2018, 30: 082001. doi: 10.11884/HPLPB201830.180028
Liu Wenjun, Yang Wei, Guo Yinbiao. Characteristic of bounded abrasive polishing for fused silica glass in anhydrous environment[J]. High Power Laser and Particle Beams, 2018, 30: 082001. doi: 10.11884/HPLPB201830.180028
Citation: Liu Wenjun, Yang Wei, Guo Yinbiao. Characteristic of bounded abrasive polishing for fused silica glass in anhydrous environment[J]. High Power Laser and Particle Beams, 2018, 30: 082001. doi: 10.11884/HPLPB201830.180028

熔融石英玻璃无水环境固结磨粒抛光特性

doi: 10.11884/HPLPB201830.180028
基金项目: 

国家科技重大专项 2017ZX04022001-207

福建省引导项目 2017H0036

详细信息
    作者简介:

    刘文俊(1993—),男,硕士,从事固结磨粒抛光研究;97591078@qq.com

  • 中图分类号: TH16

Characteristic of bounded abrasive polishing for fused silica glass in anhydrous environment

  • 摘要: 为了克服游离磨粒抛光的随机性、磨料浪费以及产生的水合层等问题,提出了一种无水环境下熔融石英玻璃固结磨粒抛光技术。研究实现了稳定的抛光轮烧结工艺,并应用于熔融石英玻璃抛光加工,通过对加工产物和抛光轮粉末进行EDS能谱分析和XRD衍射分析,从微观上初步阐述了固结磨粒抛光的去除机理;从宏观上探索压力和转速对去除效率和表面粗糙度的影响。实验结果表明:加工过程中,在法向力和剪切力作用下,CeO2磨粒和熔融石英发生化学反应,CeO2将SiO2带出玻璃,实现材料去除;同时,压力和转速对加工效率影响并不遵循Preston公式,温升和排屑成为决定去除效率的关键。
  • 图  1  抛光轮制作流程图及成型样品

    Figure  1.  Manufacture process of polishing wheel and a product sample

    图  2  加工装置示意图及简化图

    Figure  2.  Processing unit diagram and simplified diagram

    图  3  表面粗糙度与材料去除深度的评价方法

    Figure  3.  Evaluation method for surface roughness and material removal

    图  4  抛光轮粉末能谱图和加工产物残屑能谱图

    Figure  4.  EDS spectrum images of grinding wheel powder and grinding chips

    图  5  砂轮、磨削屑和熔融石英的XRD分析

    Figure  5.  XRD analysis of grinding wheel powder grinding chips and fused silica

    图  6  材料去除过程

    Figure  6.  Material removal process

    图  7  恒压和恒转速的去除深度随加工时间变化关系

    Figure  7.  Relationship between the removal depth of constant pressure and constant rotating speed with the processing time

    图  8  恒压力和恒转速的粗糙度随加工时间变化关系

    Figure  8.  Relationship between the roughness of constant pressure and constant rotating speed with the processing time

    图  9  50 kPa, 150 r/min加工条件下的显微镜图和粗糙度检测图

    Figure  9.  Microscope image and roughness measured under the processing conditions of 50 kPa, 150 r/min

    表  1  实验参数

    Table  1.   Experimental parameters

    No. downward load /kPa rotating speed of polishing wheel w1/(r·min-1) rotating speed of sample w2/(r·min-1)
    1 50 95 105
    2 50 145 155
    3 50 195 205
    4 25 95 105
    5 70 95 105
    下载: 导出CSV

    表  2  砂轮粉和磨削屑的元素质量分数对比

    Table  2.   Contrast of element fractions of grinding wheel powder and grinding chips

    element fraction of polishing wheel/% fraction of grinding chips/%
    O 32.32 43.98
    Al 0.06 0.04
    Si 11.42 22.52
    Ca 1.85 1.08
    Ce 54.34 32.38
    下载: 导出CSV
  • [1] Hawleyfedder R A, Stolz C J, Menapace J A, et al. NIF optical materials and fabrication technologies: an overview[C]//Proc of SPIE. 2004, 5341: 102-105.
    [2] 郑万国, 魏晓峰, 朱启华, 等. 神光-Ⅲ主机装置成功实现60 TW/180 kJ三倍频激光输出[J]. 强激光与粒子束, 2016, 28: 019001. doi: 10.11884/HPLPB201628.019901

    Zheng Wanguo, Wei Xiaofeng, Zhu Qihua, et al. SG-Ⅲ laser facility has successfully achieved 60 TW/180 kJ ultraviolet laser (351 nm) output. High Power Laser and Particle Beams, 2016, 28: 019001 doi: 10.11884/HPLPB201628.019901
    [3] Moses E I, Campbell J N, Stolz C J, et al. The National Ignition Facility: The world's largest optics and laser system[C]//Proc of SPIE. 2003, 5001: 1-15.
    [4] 叶卉, 杨炜, 胡陈林, 等. 磨削加工光学元件亚表面损伤探究[J]. 强激光与粒子束, 2014, 26 : 092010. doi: 10.11884/HPLPB201426.092010

    Ye Hui, Yang Wei, Hu Chenlin, et al. Subsurface damage of ground optical elements. High Power Laser and Particle Beams, 2014, 26 : 092010 doi: 10.11884/HPLPB201426.092010
    [5] 林晓辉, 马凯威, 黄海滨, 等. 轴对称非球面磨削表面粗糙度和波纹度的分布特性[J]. 强激光与粒子束, 2015, 27: 092013. doi: 10.11884/HPLPB201527.092013

    Lin Xiaohui, Ma Kaiwei, Huang Haibin, et al. Distribution characteristics of surface roughness and waviness error in axisymmetric aspheric grinding. High Power Laser and Particle Beams, 2015, 27: 092013 doi: 10.11884/HPLPB201527.092013
    [6] 杨炜, 郭隐彪, 许乔, 等. 超精抛光中边缘效应对材料去除量的影响[J]. 强激光与粒子束, 2008, 20(10): 1653-1657. http://www.hplpb.com.cn/article/id/3727

    Yang Wei, Guo Yinbiao, Xu Qiao, et al. Edge effects on material removal amount in ultra-precise polishing process. High Power Laser and Particle Beams, 2008, 20(10): 1653-1657 http://www.hplpb.com.cn/article/id/3727
    [7] Li Yaguo, Hou Jing, Xu Qiao, et al. The characteristics of optics polished with a polyurethane pad[J]. Optics Express, 2008, 16(14): 10285-10293. doi: 10.1364/OE.16.010285
    [8] Gillman B E, Jacobs S D. Bound-abrasive polishers for optical glass. [J]. Applied Optics, 1998, 37(16): 3498. doi: 10.1364/AO.37.003498
    [9] Zhou L, Eda H, Shimizu J, et al. Defect-free fabrication for single crystal silicon substrate by chemo-mechanical grinding[J]. CIRP Annals-Manufacturing Technology, 2006, 55(1): 313-316. doi: 10.1016/S0007-8506(07)60424-7
    [10] Li Yaguo, Wu Yongbo, Zhou Libo, et al. Vibration-assisted dry polishing of fused silica using a fixed-abrasive polisher[J]. International Journal of Machine Tools & Manufacture, 2014, 77(1): 93-102.
    [11] Tian Y B, Zhou L, Shimizu J, et al. Elimination of surface scratch/texture on the surface of single crystal Si substrate in chemo-mechanical grinding (CMG) process[J]. Applied Surface Science, 2009, 255(7): 4205-4211. doi: 10.1016/j.apsusc.2008.11.009
    [12] Cook L M. Chemical processes in glass polishing[J]. Journal of Non Crystalline Solids, 1990, 120(1): 152-171.
    [13] Osseo-Asare K. Surface chemical processes in chemical mechanical polishing relationship between silica material removal rate and the point of zero charge of the abrasive material[J]. Journal of the Electrochemical Society, 2002, 149(12): G651-G655. doi: 10.1149/1.1516777
    [14] Preston F W. The structure of abraded glass surfaces[J]. Transactions of the Optical Society, 1922, 23(3): 141. doi: 10.1088/1475-4878/23/3/301
    [15] Block H. Seizure delay method for determining the protection against scuffing afforded by extreme lubricants[J]. Society of Auto Engrs, 1939, 44(5): 193-210.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  273
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-22
  • 修回日期:  2018-04-18
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回