留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

D-T中子源旋转靶活化计算与分析

高晖 沈姚崧 袁永刚

高晖, 沈姚崧, 袁永刚. D-T中子源旋转靶活化计算与分析[J]. 强激光与粒子束, 2018, 30: 096002. doi: 10.11884/HPLPB201830.180039
引用本文: 高晖, 沈姚崧, 袁永刚. D-T中子源旋转靶活化计算与分析[J]. 强激光与粒子束, 2018, 30: 096002. doi: 10.11884/HPLPB201830.180039
Gao Hui, Shen Yaosong, Yuan Yonggang. Activation calculation and analysis for rotary target chamber irradiated by D-T neutron[J]. High Power Laser and Particle Beams, 2018, 30: 096002. doi: 10.11884/HPLPB201830.180039
Citation: Gao Hui, Shen Yaosong, Yuan Yonggang. Activation calculation and analysis for rotary target chamber irradiated by D-T neutron[J]. High Power Laser and Particle Beams, 2018, 30: 096002. doi: 10.11884/HPLPB201830.180039

D-T中子源旋转靶活化计算与分析

doi: 10.11884/HPLPB201830.180039
详细信息
    作者简介:

    高晖(1972—), 女,副研究员,主要从事辐射防护研究; qianliyan2005@caep.cn

  • 中图分类号: TL64

Activation calculation and analysis for rotary target chamber irradiated by D-T neutron

  • 摘要: 为实现14 MeV D-T中子源旋转靶活化特性计算与分析,首次采用一种新的技术途径,将自主研发的活化程序BURNDOT与蒙特卡罗自动建模系统MCAM、蒙特卡罗粒子输运程序MCNP相结合,通过中子输运、材料活化、光子输运模拟计算的耦合,考察了材质、栅元、主要活化核素对靶室活化特性的影响。结果表明,约以辐照后68 h为界,材料铜、316不锈钢先后作为旋转靶室活度的主要贡献者,前者其产生的缓发γ剂量因62Cu, 64Cu核素的存在而达到活化剂量最大值,后者因有长半衰期核素55Fe, 57Co, 54Mn等的存在,但其产生的剂量率值低于安全限值10 μSv/h。采用新方法的计算结果与采用欧洲活化程序FISPACT-2007的计算结果符合较好。
  • 图  1  旋转靶室几何模型剖视图

    Figure  1.  Sectional view of geometrical modeling of rotary target chamber

    图  2  活化计算流程图

    Figure  2.  Flowchart of activation calculation

    图  3  中子能谱

    Figure  3.  Neutron spectra of cells

    图  4  不同栅元中子注量分布

    Figure  4.  Distribution of neutron flux of cells

    图  5  不同材料活度随时间变化曲线

    Figure  5.  Curves of activity generated from different materials vs time

    图  6  停止辐照初时(T=0)不同栅元活度贡献

    Figure  6.  Proportion of activity of cells at the first time after neutron radiation

    图  7  铜生核素的活度随时间变化曲线

    Figure  7.  Curves of nuclide activity generated from copper vs time

    图  8  316不锈钢生核素的活度随时间变化曲线

    Figure  8.  Curves of nuclide activity generated from 316 stainless steel vs time

    图  9  铝生核素的活度随时间变化曲线

    Figure  9.  Curves of nuclide activity generated from aluminum vs time

    图  10  停止辐照初时(t=0))缓发γ三维剂量场分布

    Figure  10.  Three dimensional delayed γ dose distribution right after neutron radiation

    图  11  辐照后缓发γ剂量率随距离变化曲线

    Figure  11.  Curves of delayed γ dose rate at different distance from point A after neutron radiation over 8 h

    图  12  A处缓发γ剂量率随栅元变化曲线

    Figure  12.  Curves of delayed γ dose rate from different cells at A location after neutron radiation

    表  1  旋转靶室栅元结构参数

    Table  1.   Structure parameters of cells consisting the rotary target chamber

    cell No. material volume/cm3 mass/g function
    1 316 stainless steel 401.730 3 166.20 activation
    2 316 stainless steel 90.714 714.94 activation
    3 pure copper 69.115 619.27 activation
    4 pure copper 90.085 807.16 activation
    5 316 stainless steel 11.819 93.15 activation
    6 pure aluminum 18.148 49.00 activation
    7 pure aluminum 147.800 399.06 activation
    8 pure aluminum 64.280 173.56 activation
    9 316 stainless steel 48.119 379.24 activation
    10 water 16.840 16.84 cooling
    11 pure copper 89.892 805.43 activation
    12 pure titanium 0.204 0.92 activation
    13 316 stainless steel 382.910 3 017.80 activation
    14 316 stainless steel 1 146.400 9 035.20 activation
    下载: 导出CSV
  • [1] 李德平, 潘自强. 辐射防护手册[M]. 北京: 原子能出版社, 1987.

    Li Deping, Pan Ziqiang. Radiation protection manual. Beijing: Atomic Energy Press, 1987
    [2] Shypailo R J. Stability evaluation and correction of a pulsed neutron generator prompt gamma activation analysis system[J]. J Radioanal Nucl Chem, 2016, 307: 1781-1786. doi: 10.1007/s10967-015-4440-7
    [3] Vuolo M, Bonifetto R, Dulla S, et al. Evaluation of the neutron activation of JET in-vessel components following DT irradiation[J]. Fusion Engineering and Design, 2014, 89: 2071-2075. doi: 10.1016/j.fusengdes.2014.02.050
    [4] Forrest R A. FISPACT-2007: User manual[R]. UKAEA FUS 534, 2007.
    [5] Croff A G. User's manual for Origen2 computer code[R]. ORNL/TM-7175, 1980.
    [6] Liu Xiaoping, Luo Yuetong, Tong Lili, et al. Development and application of MCNP auto-modeling tool: Mcam 3.0[J]. Fusion Engineering and Design, 2005, 75/79: 1275-1279. doi: 10.1016/j.fusengdes.2005.06.236
    [7] Briesmeister J F. MCNP―A general Monte Carlo N-particle transport code[R]. LA-370-M, 2000.
    [8] Rodenas J. Application of the Monte Carlo method to estimate doses due to neutron activation of different materials in a nuclear reactor[J]. Radiation Physics and Chemistry, 2017, 140: 442-446. doi: 10.1016/j.radphyschem.2017.02.015
    [9] Rodenas J, Gallardo S, Weirich F, et al. Application of dosimetry measurements to analyze the neutron activation of a stainless steel sample in a training nuclear reactor[J]. Radiat Phys Chem, 2014, 104: 368-371. doi: 10.1016/j.radphyschem.2014.05.013
    [10] Rodenas J, Abarca A, Gallardo S. Analysis of dose rates received around the storage pool for irradiated control rods in a BWR nuclear power plant[J]. Applied Radiation and Isotopes, 2011, 69: 1104-1107. doi: 10.1016/j.apradiso.2010.10.019
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  819
  • HTML全文浏览量:  232
  • PDF下载量:  127
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-26
  • 修回日期:  2018-05-18
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回