留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光谱编码成像系统的数据压缩技术

何璐 戴博 张大伟

何璐, 戴博, 张大伟. 光谱编码成像系统的数据压缩技术[J]. 强激光与粒子束, 2018, 30: 099002. doi: 10.11884/HPLPB201830.180090
引用本文: 何璐, 戴博, 张大伟. 光谱编码成像系统的数据压缩技术[J]. 强激光与粒子束, 2018, 30: 099002. doi: 10.11884/HPLPB201830.180090
He Lu, Dai Bo, Zhang Dawei. Data compression for optical spectrum-encoding imaging system[J]. High Power Laser and Particle Beams, 2018, 30: 099002. doi: 10.11884/HPLPB201830.180090
Citation: He Lu, Dai Bo, Zhang Dawei. Data compression for optical spectrum-encoding imaging system[J]. High Power Laser and Particle Beams, 2018, 30: 099002. doi: 10.11884/HPLPB201830.180090

光谱编码成像系统的数据压缩技术

doi: 10.11884/HPLPB201830.180090
基金项目: 

国家自然科学基金项目 61601292

国家自然科学基金项目 61775140

详细信息
    作者简介:

    何璐(1994-), 女,硕士研究生,从事光学成像技术;helu416@163.com

    通讯作者:

    戴博(1986-),男,副教授,研究方向包括光学成像技术、高速全光信号处理和光流控技术;lioneldai2014@163.com

  • 中图分类号: O439

Data compression for optical spectrum-encoding imaging system

  • 摘要: 利用时间拉伸显微成像系统观察并记录非重复动态随机现象,在其超高成像速度和高空间分辨率下必定会产生大量的数据。一种基于差分检测和游程编码的数据压缩方法,可以有效地解决时间拉伸成像系统的数据存储问题。差分检测可以消除连续相同的信号,只检测出相邻信号的差异,从而提高游程编码算法的有效性。实验中,采用扫描频率为77.76 MHz的时间拉伸显微成像对分辨率板、人红细胞和人乳腺癌细胞线性扫描成像。实验结果表明,数据压缩比可以达到8.47,对比分析发现经过差分检测方法可以获得更高的压缩比。另外,通过计算重建后的图像与原图的结构相似性(SSIM)值发现,经过数据压缩后高质量的图像可以被重建。
  • 图  1  成像系统方案

    Figure  1.  Schematic of the imaging system

    DCF: dispersion compensation fiber, EDFA: erbium-doped fiber amplifier, TODL: tunable optical delay line, BPD: balanced photodetection.

    图  2  数据压缩的原理

    Figure  2.  Principle of data compression

    图  3  标准分辨率板USAF-1951成像结果图

    Figure  3.  Imaging result of standard resolution test target USAF-1951

    图  4  (a) 和(c)是人乳腺癌细胞和红细胞经过差分检测之后的图片,(b)和(d)是游程编码解压缩后复原的图片

    Figure  4.  Iamages for validation. (a) and (c) are images of MCF-7 cell and red blood cell obtained by differential detection, (b) and (d) are reconstructed images after run-length decoding

    图  5  压缩比与采样分辨率Nb以及Nbl的关系

    Figure  5.  Compression ratio for ADC resolution and countersize

    图  6  解压缩后图像的结构相似性

    Figure  6.  SSIM of decompressed image

    表  1  实验仪器的关键参数

    Table  1.   Key parameters of experiment apparatus

    center wavelength of laser/nm 10 dB width of laser/nm pulsewidth/fs repetition rate of pulse/MHz groove density of diffraction grating/(line·mm-1)
    1557 8 80 77.76 600
    focal length of convex lens1/mm focal length of convex lens2/mm dispersion coefficient /(ps·nm-1·km-1) length of DCF/km bandwidth of balanced photodetection/GHz
    15 60 130 12.1 50
    bandwidth of oscilloscope/GHz sampling rate of oscilloscope/(Gs·s-1) delay of TODL/ns
    4 20 12.86
    下载: 导出CSV
  • [1] 王哲斌, 杨冬, 张惠鸽, 等. 光学条纹相机时间扫描性能应用[J]. 强激光与粒子束, 2012, 24(8): 1836-1840. doi: 10.3788/HPLPB20122408.1836

    Wang Zhebin, Yang Dong, Zhang Huige, et al. Sweep time performance of optic streak camera. High Power Laser and Particle Beams, 2012, 24(8): 1836-1840 doi: 10.3788/HPLPB20122408.1836
    [2] 李剑, 但加坤, 赵新才, 等. 超高速激光纹影技术测量脉冲功率驱动的磁重联现象[J]. 强激光与粒子束, 2014, 26: 092006. doi: 10.11884/HPLPB201426.092006

    Li Jian, Dan Jiakun, Zhao Xincai, et al. Measurement of magnetic reconnection driven by pulse power using ultra high speed laser schlieren technology. High Power Laser and Particle Beams, 2014, 26: 092006 doi: 10.11884/HPLPB201426.092006
    [3] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena[J]. Nature, 2009, 458(7242): 1145-1149. doi: 10.1038/nature07980
    [4] Tsia K K, Goda K, Capewell D, et al. Performance of serial time-encoded amplified microscope[J]. Optics Express, 2010, 18(10): 10016-10028. doi: 10.1364/OE.18.010016
    [5] 陈宏伟, 邢芳俭, 王雨西, 等. 超快平面显微成像技术[J]. 数据采集与处理, 2014, 29(6): 895-900. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201406005.htm

    Chen Hongwei, Xing Fangjian, Wang Yuxi, et al. Ultra-fast surface microscopic imaging technique. Journal of Data Acquisition and Processing, 2014, 29(6): 895-900 https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ201406005.htm
    [6] 焦小毅, 林静, 程晓明, 等. 时间序列编码放大显微系统的成像方法研究[J]. 强激光与粒子束, 2016, 28: 101008. doi: 10.11884/HPLPB201628.160103

    Jiao Xiaoyi, Lin Jing, Cheng Xiaoming, et al. Imaging method for serial time-encoded amplified microscope. High Power Laser and Particle Beams, 2016, 28: 101008 doi: 10.11884/HPLPB201628.160103
    [7] Mahjoubfar A, Churkin D V, Barland S, et al. Time stretch and its applications[J]. Nature Photonics, 2017, 11(6): 341-351. doi: 10.1038/nphoton.2017.76
    [8] Mahjoubfar A, Goda K, Betts G, et al. Optically amplified detection for biomedical sensing and imaging[J]. J Opt Soc Am A, 2013, 30(10): 2124-2132. doi: 10.1364/JOSAA.30.002124
    [9] Lei C, Ito T, Ugawa M, et al. High-throughput label-free image cytometry and image-based classification of live Euglena gracilis[J]. Biomedical Optics Express, 2016, 7(7): 2703-2708. doi: 10.1364/BOE.7.002703
    [10] Roussel E, Evain C, Le Parquier M, et al. Observing microscopic structures of a relativistic object using a time-stretch strategy[J]. Science Report, 2015, 5: 10330.
    [11] Chen C L, Mahjoubfar A, Jalali B. Optical data compression in time stretch imaging[J]. PlOS ONE, 2015, 10(4): e0125106.
    [12] Guo Q, Chen H, Weng Z, et al. Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition[J]. Optics Express, 2015, 23(23): 29639-29646.
    [13] Dai Bo, Zhuo Ran, Yin Songchao, et al. Ultrafast imaging with anti-aliasing based on optical time-division multiplexing[J]. Optics Letters, 2016, 41(5): 882-885.
  • 加载中
图(6) / 表(1)
计量
  • 文章访问数:  910
  • HTML全文浏览量:  231
  • PDF下载量:  168
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 修回日期:  2018-06-08
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回