留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中子-中子碰撞非线性输运的确定论模拟

黄凯 傅学东 应阳君 李金鸿 竹生东

黄凯, 傅学东, 应阳君, 等. 中子-中子碰撞非线性输运的确定论模拟[J]. 强激光与粒子束, 2018, 30: 116001. doi: 10.11884/HPLPB201830.180158
引用本文: 黄凯, 傅学东, 应阳君, 等. 中子-中子碰撞非线性输运的确定论模拟[J]. 强激光与粒子束, 2018, 30: 116001. doi: 10.11884/HPLPB201830.180158
Huang Kai, Fu Xuedong, Ying Yangjun, et al. Deterministic numerical simulation of non-linear neutron transport in inertial confinement fusion[J]. High Power Laser and Particle Beams, 2018, 30: 116001. doi: 10.11884/HPLPB201830.180158
Citation: Huang Kai, Fu Xuedong, Ying Yangjun, et al. Deterministic numerical simulation of non-linear neutron transport in inertial confinement fusion[J]. High Power Laser and Particle Beams, 2018, 30: 116001. doi: 10.11884/HPLPB201830.180158

中子-中子碰撞非线性输运的确定论模拟

doi: 10.11884/HPLPB201830.180158
基金项目: 

科学挑战专题项目 TZ2018001

博士后基金项目 2017M620690

详细信息
    作者简介:

    黄凯(1988—),男,博士,从事中子诊断研究;kaihwang@live.cn

    通讯作者:

    竹生东(1973—),男,研究员,现从事原子核物理研究工作;zhusd@iapcm.ac.cn

  • 中图分类号: TL65

Deterministic numerical simulation of non-linear neutron transport in inertial confinement fusion

  • 摘要: 从几个方面着手提高确定论方法的计算精度:首先,中子输运计算的相空间离散采用间断有限元处理方法,并使用较大的角度离散数和散射阶数;其次,使用蒙特卡罗直接统计方法得到高精度多群截面;最后,引入收敛于真解的中子-中子碰撞源迭代。数值算例验证表明,经过改进的确定论方法具有良好的稳定性和精度,能以可靠的精度求解考虑中子-中子碰撞过程的非线性问题。
  • 图  1  相空间的离散示意图

    Figure  1.  Illustration of phase space discretization

    图  2  单个离散求解区域示意图

    Figure  2.  Illustration of a single discretization area

    图  3  多群固定源问题计算流程

    Figure  3.  Flow diagram of multi-group fixed source calculation

    图  4  多群截面制作流程

    Figure  4.  Flow diagram of multi-group cross section preparation

    图  5  考虑n-n碰撞的多群固定源问题计算流程

    Figure  5.  Flow diagram of multi-group fixed source calculation with consideration of n-n collision

    图  6  计算模型示意图

    Figure  6.  Sketch of calculation model

    图  7  模型1 OpenMC和SN(p0, p1, p3, p5)D-T混合物区域75群通量计算结果和偏差

    Figure  7.  Calculation results and discrepancies of 75-group flux in D-T mixture region of model 1 between OpenMC and SN (p0, p1, p3, p5)

    图  8  模型1 OpenMC和SN(p0, p1, p3, p5)Au区域75群通量计算结果和偏差

    Figure  8.  Calculation results and discrepancies of 75-group flux in Au region of model 1 between OpenMC and SN (p0, p1, p3, p5)

    图  9  模型2 OpenMC和SN(p0, p1, p3, p5)D-T混合物区域75群通量计算结果和偏差

    Figure  9.  Calculation results and discrepancies of 75-group flux in D-T mixture region of model 2 between OpenMC and SN (p0, p1, p3, p5)

    图  10  模型2 OpenMC和SN(p0, p1, p3, p5)CH区域75群通量计算结果和偏差

    Figure  10.  Calculation results and discrepancies of 75-group flux in CH region of model 2 between OpenMC and SN (p0, p1, p3, p5)

    表  1  计算模型1源强1×1024 cm-3·sr-1·μs-1时外边界中子流

    Table  1.   Neutron current at outer surface while source strength is 1×1024 cm-3·sr-1·μs-1 in calculation model 1

    group energy /MeV neutron current by DSMC/μs-1 neutron current by SN/μs-1
    no n-n collision considering n-n collision no n-n collision considering n-n collision
    0.0~7.0 8.276 85×1024 8.281 66×1024 7.017 50×1024 7.021 88×1024
    7.0~10.0 1.916 48×1024 1.921 49×1024 2.033 06×1024 2.039 41×1024
    10.0~14.0 6.718 30×1024 6.719 31×1024 7.073 58×1024 7.077 15×1024
    14.0~14.2 3.855 91×1025 3.853 08×1025 3.921 67×1025 3.919 16×1025
    14.2~14.7 0.0 7.439 90×1020 0.0 8.055 19×1020
    14.7~15.5 0.0 9.857 80×1020 0.0 1.079 21×1021
    15.5~16.5 0.0 1.101 48×1021 0.0 1.173 97×1021
    16.5~18.0 0.0 1.466 80×1021 0.0 1.540 64×1021
    18.0~20.0 0.0 1.624 20×1021 0.0 1.771 08×1021
    20.0~22.0 0.0 1.366 84×1021 0.0 1.509 10×1021
    22.0~24.0 0.0 1.071 23×1021 0.0 1.181 52×1021
    24.0~26.0 0.0 7.428 90×1020 0.0 8.790 52×1020
    26.0~28.0 0.0 3.844 26×1020 0.0 5.010 62×1020
    28.0~30.0 0.0 1.384 33×1019 0.0 2.373 02×1017
    total 5.547 07×1025 5.546 28×1025 5.534 09×1025 5.534 05×1025
    下载: 导出CSV

    表  2  计算模型1源强5×1024 cm-3sr-1 μs-1时外边界中子流

    Table  2.   Neutron current at outer surface while source strength is 5×1024 cm-3sr-1 μs-1 in calculation model 1

    group energy /MeV neutron current by DSMC/μs-1 neutron current by SN/μs-1
    no n-n collision considering n-n collision no n-n collision considering n-n collision
    0.0~7.0 4.138 12×1025 4.119 92×1025 3.508 75×1025 3.519 62×1025
    7.0~10.0 9.582 40×1024 9.790 89×1024 1.016 53×1025 1.032 11×1025
    10.0~14.0 3.359 15×1025 3.378 30×1025 3.536 79×1025 3.545 47×1025
    14.0~14.2 1.927 96×1026 1.921 22×1026 1.960 84×1026 1.954 63×1026
    14.2~14.7 0.0 2.057 55×1022 0.0 2.013 55×1022
    14.7~15.5 0.0 2.697 98×1022 0.0 2.697 08×1022
    15.5~16.5 0.0 2.933 61×1022 0.0 2.932 84×1022
    16.5~18.0 0.0 3.785 97×1022 0.0 3.846 71×1022
    18.0~20.0 0.0 4.165 58×1022 0.0 4.419 02×1022
    20.0~22.0 0.0 3.405 78×1022 0.0 3.762 61×1022
    22.0~24.0 0.0 2.707 68×1022 0.0 2.944 32×1022
    24.0~26.0 0.0 1.884 99×1022 0.0 2.189 96×1022
    26.0~28.0 0.0 9.793 35×1021 0.0 1.248 77×1022
    28.0~30.0 0.0 3.104 26×1020 0.0 2.954 76×1019
    total 2.773 54×1026 2.771 42×1026 2.767 04×1026 2.766 95×1026
    下载: 导出CSV

    表  3  计算模型2外边界中子流

    Table  3.   Neutron current at outer surface in calculation model 2

    group energy /MeV neutron current at low source strength neutron current at high source strength
    no n-n collision considering n-n collision no n-n collision considering n-n collision
    0.0~7.0 3.560 28×1019 3.560 29×1019 1.780 14×1020 1.780 16×1020
    7.0~10.0 1.219 35×1019 1.219 36×1019 6.096 74×1019 6.096 95×1019
    10.0~14.0 4.240 49×1019 4.240 50×1019 2.120 25×1020 2.120 26×1020
    14.0~14.2 2.762 72×1020 2.762 72×1020 1.381 36×1021 1.381 35×1021
    14.2~14.7 1.124 17×1014 1.255 78×1014 5.620 83×1014 8.911 26×1014
    14.7~15.5 4.328 38×107 1.862 36×1013 2.164 19×108 4.655 89×1014
    15.5~16.5 0.0 2.079 18×1013 0.0 5.197 93×1014
    16.5~18.0 0.0 2.775 46×1013 0.0 6.938 63×1014
    18.0~20.0 0.0 3.234 29×1013 0.0 8.085 69×1014
    20.0~22.0 0.0 2.777 12×1013 0.0 6.942 75×1014
    22.0~24.0 0.0 2.193 69×1013 0.0 5.484 20×1014
    24.0~26.0 0.0 1.641 45×1013 0.0 4.103 60×1014
    26.0~28.0 0.0 9.451 34×1012 0.0 2.362 82×1014
    28.0~30.0 0.0 1.026 85×107 0.0 1.268 03×109
    total 3.664 73×1020 3.664 74×1020 1.832 37×1021 1.832 37×1020
    下载: 导出CSV
  • [1] 王淦昌, 袁之尚. 惯性约束核聚变[M]. 北京: 原子能出版社, 2005.

    Wang Ganchang, Yuan Zhishang. Inertial confinement fusion. Beijing: Nuclear Energy Press, 2005
    [2] Nelson M B, Cable M D. LANSA: A large neutron scintillator array for neutron spectroscopy at Nova[J]. Review of Scientific Instruments, 1992, 63(10): 4874-4876. doi: 10.1063/1.1143536
    [3] Azechi H, Cable D M, Stapf R. Review of secondary and tertiary reactions, and neutron scattering as diagnostic techniques for inertial confinement fusion targets[J]. Laser and Particle Beams, 1991, 9(1): 119-134. doi: 10.1017/S0263034600002378
    [4] Welch D R, Kislev H, Miley G H. Tertiary fusion neutron diagnostic for density-radius product and stability of inertial confinement fusion[J]. Review of Scientific Instruments, 1988, 59(4): 610-615. doi: 10.1063/1.1139842
    [5] 杜祥琬. 非线性中子输运问题的一个解法[J]. 计算物理, 1984, 1(2): 226-236. https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL198402009.htm

    Du Xiangwan. A method for solving the nonlinear neutron transport equation. Chinese Journal of Computational Physics, 1984, 1(2): 226-236 https://www.cnki.com.cn/Article/CJFDTOTAL-JSWL198402009.htm
    [6] 李树, 田东风, 邓力. 非线性中子输运问题的蒙特卡罗模拟[J]. 计算物理, 2008, 25(4): 477-482. doi: 10.3969/j.issn.1001-246X.2008.04.016

    Li Shu, Tian Dongfeng, Deng Li. Monte Carlo method for nonlinear neutron transport. Chinese Journal of Computational Physics, 2008, 25(4): 477-482 doi: 10.3969/j.issn.1001-246X.2008.04.016
    [7] Machorro E A. Discontinuous Galerkin finite element method applied to the 1-D spherical neutron transport equation[J]. Journal of Computational Physics, 2007, 223(1): 67-81. doi: 10.1016/j.jcp.2006.08.020
    [8] Mercimek M, Ozgener H A. Discontinuous finite element formulations for neutron transport in spherical geometry[J]. Annals of Nuclear Energy, 2014, 64: 244-255. doi: 10.1016/j.anucene.2013.10.012
    [9] Macfarlane R, Muir D W, Boicourt R M, et al. The NJOY nuclear data processing system[R]. LA-UR-17-20093, 2017.
    [10] Romano P K, Horelik N E, Herman B R, et al. OpenMC: A state-of-the-art Monte Carlo code for research and development[J]. Annals of Nuclear Energy, 2015, 82: 90-97. doi: 10.1016/j.anucene.2014.07.048
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1223
  • HTML全文浏览量:  269
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-31
  • 修回日期:  2018-08-15
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回