留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

非固定环带随机双面抛光技术研究

何曼泽 周佩璠 黄颖

何曼泽, 周佩璠, 黄颖. 非固定环带随机双面抛光技术研究[J]. 强激光与粒子束, 2018, 30: 122003. doi: 10.11884/HPLPB201830.180358
引用本文: 何曼泽, 周佩璠, 黄颖. 非固定环带随机双面抛光技术研究[J]. 强激光与粒子束, 2018, 30: 122003. doi: 10.11884/HPLPB201830.180358
He Manze, Zhou Peifan, Huang Ying. Research on non-fixed ring belt double-side polishing technology[J]. High Power Laser and Particle Beams, 2018, 30: 122003. doi: 10.11884/HPLPB201830.180358
Citation: He Manze, Zhou Peifan, Huang Ying. Research on non-fixed ring belt double-side polishing technology[J]. High Power Laser and Particle Beams, 2018, 30: 122003. doi: 10.11884/HPLPB201830.180358

非固定环带随机双面抛光技术研究

doi: 10.11884/HPLPB201830.180358
基金项目: 国家高技术发展计划项目
详细信息
    作者简介:

    何曼泽(1985-),男,工程师,从事冷加工工艺研究;hemanze@163.com

  • 中图分类号: TG356

Research on non-fixed ring belt double-side polishing technology

  • 摘要: 提出了一种基于平移偏摆运动的非固定环带随机双面抛光的方法,通过设计平移偏摆装置使得工件运动方式脱离固定环带的限制,借助随机性运动进行迭代,解决了行星式双面抛光等固定环带抛光过程中产生的周期性轨迹问题;通过优化运动方式组合,在随机性运动叠加情况下实现了大口径超薄元件面形稳定收敛控制。与行星式双面抛光相比,不仅面形精度更好,而且没有明显的周期性加工痕迹。该方法可以应用到对表面激光损伤阈值有特殊要求的超薄件批量生产当中。
  • 图  1  行星式双面抛光加工原理

    Figure  1.  Principle of planetary double-sided polishing

    图  2  36项泽尼克多项式对透射波前进行滤波处理

    Figure  2.  36-term Zernike polynomials filtering of transmission wavefront

    图  3  非固定环带随机双面抛光模型

    Figure  3.  Model of non-fixed ring belt random double-sided polishing

    图  4  非固定环带双面抛光仿真结果

    Figure  4.  Results of computer simulation of non-fixed ring belt double-sided polishing

    图  5  非固定环带随机双面抛光设备

    Figure  5.  Non-fixed ring belt random double-sided polishing equipment

    图  6  430 mm×430 mm×10 mm熔石英元件的面形结果

    Figure  6.  Surface contour plot of 430 mm×430 mm×10 mm ultra-thin fused silica component

    图  7  36项泽尼克多项式对透射波前进行滤波处理

    Figure  7.  36-term Zernike polynomials filtering of transmission wavefront

    图  8  430 mm×430 mm×10 mm超薄件批量生产面形结果

    Figure  8.  Surface contour plots of batch production of 430 mm×430 mm×10 mm ultra-thin component

    表  1  非固定环带随机双面抛光模拟仿真参数设置

    Table  1.   Parameter setting of computer simulation of non-fixed ring belt random double-side polishing

    simulation size rotation rate of bottom polishing disk/(r·min-1) rotation rate of workpiece/(r·min-1) translation cycle of workpiece/(r·min-1) swinging cycle of workpiece/(r·min-1)
    430 mm×430 mm (one dot per 2.5 mm,dot array 166×166) 9 6 5 (translation stroke 200 mm) 10 (swinging stroke 200 mm)
    下载: 导出CSV
  • [1] 乔战峰, 卢兴强, 赵东峰, 等. 神光Ⅱ升级装置终端光学组件的排布设计[J]. 中国激光, 2008, 35: 1328-1332. doi: 10.3321/j.issn:0258-7025.2008.09.006

    Qiao Zhanfeng, Lu Xingqiang, Zhao Dongfeng, et al. Arrangement design of the final optics assembly for SG-Ⅱ upgrading laser. Chin J Laser, 2008, 35: 1328-1332 doi: 10.3321/j.issn:0258-7025.2008.09.006
    [2] Peng H, Zhang X M, Wei X, et al. Status of the SG-Ⅲ solid state laser project[C]//Proc of SPIE. 1999, 3492: 25-33.
    [3] 蒋勇. 熔石英光学元件表面损伤修复的理论和实验研究[D]. 成都: 电子科技大学, 2012: 173-178.

    Jiang Yong. Theoretical and experimental study on surface damage repaire of fused silca optics. Chengdu: University of Electronic Science and Technology of China, 2012: 173-178
    [4] 章春来, 刘春明, 向霞, 等. 裂纹或气泡对熔石英损伤修复坑场调制的近场模拟[J]. 物理学报, 2012, 61(12): 319-330. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212042.htm

    Zhang Chunlai, Liu Chunming, Xiang Xia, et al. Near-field modulated simulation of repaired site contained crack or bubble in fused silica subsurface. Acta Physica Sinica, 2012, 61(12): 319-330 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201212042.htm
    [5] Bass I L, Draggoo V G, Guss G M, et al. Mitigation of laser damage growth in fused silica NIF optics with a galvanometer scanned CO2 laser[C]//Proc of SPIE. 2006, 62612A.
    [6] Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: An overview[C]//Proc of SPIE. 2004, 5341: 84-101.
    [7] Preston F W. Class technology[J]. Journal of the Society of Class Technology, 1927, 11(24): 277-281.
    [8] Zhao Y W, Chang L A. Micro-contact and wear model for chemical mechanical polishing of silicon wafer[J]. Wear, 2002, 252(3/4): 220-226.
    [9] Fu G H, Chandra A, Guha S A. Plasticity-based model of material removal in chemical-mechanical polishing(CMP)[J]. IEEE Trans Semiconductor Manufacturing, 2001, 14(4): 1698-1701.
    [10] Runnrls S R, Eyman L M. Tribology analysis of chemical-mechanical polishing[J]. Electrochem SOC, 1994, 14(6): 69-71. https://ui.adsabs.harvard.edu/abs/1994JElS..141.1698R/abstract#:~:text=%EE%80%80Tribology%20analysis%20of%20chemical-mechanical%20polishing%EE%80%81.%20To%20better%20understand,considerable%20depending%20on%20whether%20or%20not%20the%20
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  982
  • HTML全文浏览量:  168
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-17
  • 修回日期:  2018-11-29
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回