留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

外粒子源注入下气体放电过程的模拟研究

张雷 王真 赵光义 祁建敏

张雷, 王真, 赵光义, 等. 外粒子源注入下气体放电过程的模拟研究[J]. 强激光与粒子束, 2019, 31: 016001. doi: 10.11884/HPLPB201931.180197
引用本文: 张雷, 王真, 赵光义, 等. 外粒子源注入下气体放电过程的模拟研究[J]. 强激光与粒子束, 2019, 31: 016001. doi: 10.11884/HPLPB201931.180197
Zhang Lei, Wang Zhen, Zhao Guangyi, et al. Numerical simulation of gas discharge with external particle source injected[J]. High Power Laser and Particle Beams, 2019, 31: 016001. doi: 10.11884/HPLPB201931.180197
Citation: Zhang Lei, Wang Zhen, Zhao Guangyi, et al. Numerical simulation of gas discharge with external particle source injected[J]. High Power Laser and Particle Beams, 2019, 31: 016001. doi: 10.11884/HPLPB201931.180197

外粒子源注入下气体放电过程的模拟研究

doi: 10.11884/HPLPB201931.180197
详细信息
    作者简介:

    张雷(1994-), 男,硕士,从事驱动器开关器件研究; zhanyyuyu@163.com

    通讯作者:

    王真(1981-), 男,副研究员,主要从事Z箍缩聚变裂变混合堆项目研究; wangz_es@caep.cn

  • 中图分类号: TM832

Numerical simulation of gas discharge with external particle source injected

  • 摘要: 利用Geant4程序建立外源注入式、低气压气体开关物理模型,通过模拟计算电子增益与极板间电场强度、电子增益与极板间隙距离的函数关系验证了模型的正确性。计算了气体种类、气体压强对电子增益的影响,分析得到形成自持放电所需最小入射电子数,计算结果表明:在相同的气压及电场条件下,氮气的电子增益远大于氦气,这与氦气的高电离能性质相吻合; 随气压增大,电子增益呈非线性增长; 为实现自持放电,外源注入电子数面密度为1×105~2×105 /cm2
  • 图  1  开关结构示意图

    Figure  1.  Sketch of switch

    图  2  电子增益与极板间隙的指数拟合曲线

    Figure  2.  Exponent fit of electron gain with electrode gap

    图  3  电离系数与电场强度的拟合曲线

    Figure  3.  Function fit of ionization coefficient with electric field strength

    图  4  电子增益随气体(氮气、氦气)压强的变化曲线

    Figure  4.  Changing curves of electron gain with gas(N2, He) pressure

    图  5  典型Paschen曲线

    Figure  5.  Typical Paschen curve

    图  6  电子增益随气压(氮气)的变化曲线

    Figure  6.  Changing curve of electron gain with gas(N2) pressure

    图  7  阳极板上出射电子面分布和计数图

    Figure  7.  Surface distribution and counts of outgoing electron on anode plate

    图  8  阳极板上出射电子的时间分布

    Figure  8.  Time distribution of outgoing electron on anode plate

    图  9  阳极板上出射电子累加计数统计

    Figure  9.  Accumulative count of outgoing electron on anode plate

    图  10  阳极板出射电子(1.9~1.95 ns)能量分布统计

    Figure  10.  Energy distribution of outgoing electron (1.9~1.95 ns) on anode plate

  • [1] Liu Xuandong, Sun Fengju, Liang Tianxue, et al. Experimental study on multigap multichannel gas spark closing switch for LTD[J]. IEEE Trans Plasma Science, 2009, 37(7): 1318-1323. doi: 10.1109/TPS.2009.2020729
    [2] Kovalchuk B M, Kim A A, Kumpjak E V, et al. Multi gap switch for Marx generators[C]//PPPS-2001 Pulsed Power Plasma Science. 2001: 1739-1742.
    [3] LeChien K R, Gahl J M. Investigation of a multichanneling, multigap Marx bank switch[J]. Review of Scientific Instruments, 2004, 75(1): 174-178. doi: 10.1063/1.1630834
    [4] Winands G J J, Liu Z, Pemen A J M, et al. Long lifetime, triggered, spark-gap switch for repetitive pulsed power applications[J]. Review of Scientific Instruments, 2005, 76: 085107. doi: 10.1063/1.2008047
    [5] 肖登明. 气体放电与气体绝缘[M]. 上海: 上海交通大学出版社, 2017.

    Xiao Dengming. Gas discharge and gas insulation. Shanghai: Shanghai Jiaotong University Press, 2017
    [6] 李俊娜, 邱爱慈, 蒯斌, 等. 自耦式紫外预电离开关特性[J]. 强激光与粒子束, 2008, 20(6): 994-998. http://www.hplpb.com.cn/article/id/3620

    Li Junna, Qiu Aici, Kuai Bin, et al. Characteristics of capacitance-resistance coupling UV illumination switch. High Power Laser and Particle Beams, 2008, 20(6): 994-998 http://www.hplpb.com.cn/article/id/3620
    [7] Ouyang Jianming, Ma Yanyun, Shao Fuqiu, et al. Ionization effect of atmosphere by prompt gamma rays from high-altitude nuclear explosions[J]. IEEE Trans Nuclear Science, 2014, 61(3): 1433-1438. doi: 10.1109/TNS.2014.2320595
    [8] Xiao Lei, Deng Xin, Ma Jiangbo, et al. Numerical simulation of voltage applied to the gaps of a planar multi-gap multi-channel gas switch[J]. Journal of Fusion Energy, 2015, 34(5): 954-958. doi: 10.1007/s10894-015-9902-y
    [9] Zheng Chenghang, Zhang Xuefeng, Yang Zhengda, et al. Numerical simulation of corona discharge and particle transport behavior with the particle space charge effect[J]. Journal of Aerosol Science, 2018, 118: 22-33. doi: 10.1016/j.jaerosci.2018.01.008
    [10] Lisovskiy V A, Ogloblina P A, Dudin S V, et al. Current gain of a pulsed DC discharge in low-pressure gases[J]. Vacuum, 2017, 145: 194-202. doi: 10.1016/j.vacuum.2017.08.042
    [11] Agostinelli S, Allison J, Amako K, et al. Geant4—a simulation toolkit[J]. Nuclear Instruments and Methods in Physics Research, 2003, 506(3): 250-303. doi: 10.1016/S0168-9002(03)01368-8
    [12] Allison J, Amako K, Apostolakis J, et al. Geant4 developments and applications[J]. IEEE Trans Nuclear Science, 2006, 53(1): 270-278. doi: 10.1109/TNS.2006.869826
    [13] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.

    Xu Xueji, Zhu Dingchang. Gas discharge physics. Shanghai: Fudan University Press, 1996
    [14] 郑殿春. 气体放电数值仿真方法[M]. 北京: 科学出版社, 2017.

    Zheng Dianchun. Numerical simulation methods for gas discharge. Beijing: Science Press, 2017
    [15] Liu W, Shi J J, Kong M G. Electron trapping in radio-frequency atmosphere-pressure glow discharge[J]. Applied Physics Letters, 2007, 90: 041502. doi: 10.1063/1.2425045
    [16] Mesyrats G A. Pulsed power[M]. New York: Plenum Publisher, 2005: 66-70.
  • 加载中
图(10)
计量
  • 文章访问数:  841
  • HTML全文浏览量:  196
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-20
  • 修回日期:  2019-01-14
  • 刊出日期:  2019-01-15

目录

    /

    返回文章
    返回