留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于大型超导测试平台的移能电阻系统设计

王琨 宋执权 仝玮 汪舒生 张秀青 HassanMahmood U L

王琨, 宋执权, 仝玮, 等. 基于大型超导测试平台的移能电阻系统设计[J]. 强激光与粒子束, 2019, 31: 036002. doi: 10.11884/HPLPB201931.180271
引用本文: 王琨, 宋执权, 仝玮, 等. 基于大型超导测试平台的移能电阻系统设计[J]. 强激光与粒子束, 2019, 31: 036002. doi: 10.11884/HPLPB201931.180271
Wang Kun, Song Zhiquan, Tong Wei, et al. Fast discharge resistor system design of large superconducting fusion device[J]. High Power Laser and Particle Beams, 2019, 31: 036002. doi: 10.11884/HPLPB201931.180271
Citation: Wang Kun, Song Zhiquan, Tong Wei, et al. Fast discharge resistor system design of large superconducting fusion device[J]. High Power Laser and Particle Beams, 2019, 31: 036002. doi: 10.11884/HPLPB201931.180271

基于大型超导测试平台的移能电阻系统设计

doi: 10.11884/HPLPB201931.180271
详细信息
    作者简介:

    王琨(1989-), 男,博士研究生,从事聚变电源失超保护系统研究;wangk@ipp.ac.cn

    通讯作者:

    宋执权(1975-), 男,研究员,从事大功率电源系统及开关技术研究;zhquansong@ipp.ac.cn

  • 中图分类号: TL623

Fast discharge resistor system design of large superconducting fusion device

  • 摘要: 大型超导测试平台用于测试大型超导磁性负载的性能。测试过程中,当超导磁性负载失去超导性能时,大量能量积聚于负载内部从而造成难以恢复的损害,因此需要立刻通过失超保护系统将存储于超导磁性负载内部的能量转移出并进行有效的释放。在失超保护系统中移能电阻系统用于所转移能量的承载,并通过热量排散的形式进行能量释放。针对大型超导测试平台中待测试超导磁性负载参数,设计的移能电阻系统可以根据待释放能量总量、能量转移时间以及系统电气参数等需求,通过改变电阻系统内部的连接结构从而调节移能电阻系统的能量转移过程。通过对移能电阻系统的矩阵模块化设计以及单移能电阻模块结构设计进行分析,针对每个移能电阻模块的抗电磁应力、杂散电感、结构支撑等设计进行有限元仿真分析,从而验证移能电阻系统设计的可行性。
  • 图  1  失超保护系统电路结构与电流转移图

    Figure  1.  Circuit and current transferring diagrams of quench protection system

    图  2  失超保护系统逻辑结构图

    Figure  2.  Logic diagrams of fast discharge resistor system

    图  3  移能电阻模块结构示意图

    Figure  3.  Diagram of fast discharge resistor modular structure

    图  4  无绝缘条情况下的电阻形变图

    Figure  4.  Resistor modular deformation without insulation bars

    图  5  有绝缘支撑情况下的电阻形变图

    Figure  5.  Resistor modular deformation with insulation bars

    图  6  电阻热形变图

    Figure  6.  Resistor modular deformation with heat

    图  7  不同形状焊接下的寄生电感

    Figure  7.  Resistor modular inductance with different edge

    图  8  不同数量下的支撑棒形变

    Figure  8.  Supporting deformation of poles of different groups

    图  9  测试波形及温升图

    Figure  9.  Testing current waveform and temperature rise

    表  1  不同装置的失超保护系统的技术要求

    Table  1.   Power requirement of quench protection system in different devices

    item rated voltage/kV rated current/kA energy/GJ
    EAST 2 15.0 0.4
    ITER 10 70.0 41.0
    KSTAR 8 40.0 0.5
    JT60-SA 5 25.7 1.0
    large superconductivity fusion device 20 100.0 10.0
    下载: 导出CSV

    表  2  移能电阻模块不同材料的参数

    Table  2.   Material parameters of fast discharge resistor module

    material resistivity /(Ω·mm2·m-1) temperature coefficient of resistance / (10-6· ℃-1) specific heat /(J·kg-1· ℃-1) melting point /℃ temperature rise/K weight /kg
    cast-iron 0.85 1000 470 1200 200 10 638
    aluminum 0.029 4000 920 660 200 5 434
    FeCrAl 1.26 150 491 1500 200 10 183
    SUS304 0.675 850 500 1454 200 10 000
    下载: 导出CSV
  • [1] Gambier D. Fusion for energy: A new european organization for the development of fusion energy[J]. Fusion Engineering & Design, 2009, 84(2): 138-142.
    [2] 刘勃, 武玉. ITER超导磁体线圈电磁分析[J]. 低温与超导, 2011, 39(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201101007.htm

    Liu Bo, Wu Yu. Electromagnetic analysis of superconducting magnet coils ITER. Cryogenics & Superconductivity, 2011, 39(1): 29-33 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201101007.htm
    [3] Purcell J R, Chen W, Thomas R. Magnet design considerations for Tokamak fusion reactors[J]. Nuclear Engineering & Design, 1976, 39(1): 115-122.
    [4] 马媛媛, 武玉, 许留伟, 等. CFETR CS模型线圈失超保护系统设计[J]. 低温与超导, 2018, 46(6): 47-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201806010.htm

    Ma Yuanyuan, Wu Yu, Xu Liuwei, et al. Design of quench protection system for CFETR CS model coil. Cryogenics & Superconductivity, 2018, 46(6): 47-52 https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201806010.htm
    [5] Jiang S, Chen Z, Qian X, et al. Design of the quench protection system for the 45T hybrid magnet superconducting outsert[J]. Chinese Journal of Low Temperature Physics, 2017, 39(4): 38-43.
    [6] Nazari A, Riahi S. Analyses and experimental tests for the development of the Quench Protection System for the superconducting magnets of the Satellite Tokamak JT-60SA[C]//International Topical Meeting on Microwave Photonics. 2010: 117-120.
    [7] Xu L, Liu X, Jiang J, et al. The design of quench protection of EAST toroidal field power supply system[J]. Fusion Engineering & Design, 2006, 81(20): 2549-2554.
    [8] Huang D, Xiao D. New high voltage non-inductance resistor and its application in capillary fast discharge facility[J]. High Voltage Engineering, 2005, 31(10): 41-43.
    [9] Sedlak K, Bruzzone P, Rummel T, et al. Study of the hot-spot temperature during quench in the nonplanar coils of W7-X[J]. IEEE Trans Applied Superconductivity, 2018, 28(3): 1-5.
    [10] Fu P, Song Z Q, Gao G, et al. Quench protection of the poloidal field superconducting coil system for the EAST tokamak[J]. Nuclear Fusion, 2006, 46(3): S85.
    [11] 伍科. 高温超导储能磁体的失超检测与保护研究[D]. 武汉: 华中科技大学, 2013: 8-14.

    Wu Ke. Research on quench detection and protection of high temperature SMES magnet. Wuhan: Huazhong University of Science and Technology, 2013: 8-14
    [12] Fink S, Bonicelli T, Fietz W H, et al. Transient electrical behaviour of the ITER TF coils during fast discharge and two fault cases[J]. Fusion Engineering & Design, 2005, 75(11): 135-138.
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  1286
  • HTML全文浏览量:  297
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-18
  • 修回日期:  2019-01-14
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回