留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

波导型高功率微波输能窗的研究进展

张雪 王滔 俞倩倩 王勇

张雪, 王滔, 俞倩倩, 等. 波导型高功率微波输能窗的研究进展[J]. 强激光与粒子束, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257
引用本文: 张雪, 王滔, 俞倩倩, 等. 波导型高功率微波输能窗的研究进展[J]. 强激光与粒子束, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257
Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257
Citation: Zhang Xue, Wang Tao, Yu Qianqian, et al. Research progress of high-power waveguide window[J]. High Power Laser and Particle Beams, 2021, 33: 023001. doi: 10.11884/HPLPB202133.200257

波导型高功率微波输能窗的研究进展

doi: 10.11884/HPLPB202133.200257
基金项目: 湖南省自然科学基金项目(2017JJ3314);高功率微波技术重点实验室基金项目(6142605180304)
详细信息
    作者简介:

    张 雪(1985—),女,博士,从事大功率微波器件击穿模拟研究;zhangxue.iecas@yahoo.com

  • 中图分类号: TM21

Research progress of high-power waveguide window

  • 摘要:

    波导型高功率微波输能窗是高功率速调管和高能粒子加速器的关键部件,输出窗高频击穿是引起高功率速调管失效的一个重要因素。综述了国内外电真空领域波导型输能窗的研究进展,介绍了传统盒型窗的研究现状、工艺要求和击穿机理;介绍了锥型窗、行波窗、复合模窗以及过模窗等新型输能窗的设计特点,给出了改变窗片材料属性、改变窗片表面形态、窗片边缘倒角、外置直流电场/直流磁场、改变信号波形等击穿抑制技术的研究进展。

  • 图  1  盒型窗结构示意图[9]

    Figure  1.  Schematic diagram of pill-box window

    图  2  盒型窗电场分布图[10]

    Figure  2.  Electric field distribution of pill-box window

    图  3  日本KEK微波输能窗中低功率击穿图[12-13]

    Figure  3.  Low power breakdown diagrams of pill-box window of KEK

    图  4  日本KEK微波输能窗高功率击穿图[13]

    Figure  4.  High power breakdown diagrams of pill-box window of KEK

    图  5  TTU未镀膜盒型窗沿面闪络图[14]

    Figure  5.  Flashover diagram of uncoated pill-box window of TTU

    图  6  S波段输能窗电子与未镀膜窗片表面和金属边界的碰撞量[10]

    Figure  6.  Amount of colliding electrons in the S-band HPM window and metal boundary

    图  7  抑制盒型窗带内鬼模设计方案

    Figure  7.  Design scheme of ghost mold suppression inside the window belt of the box

    图  8  宽频带盒型窗模型图

    Figure  8.  Model diagrams of broad band pill-box window

    图  9  长盒型窗测试图

    Figure  9.  Long pill-box window test

    图  10  IECAS S波段长盒型窗窗片击穿损毁图

    Figure  10.  Breakdown damage diagrams of S-band long pill-box window of IECAS

    图  11  TE11模式锥型输能窗模型图及其频谱[2]

    Figure  11.  Model diagram of TE11 mode tapered window and its spectrum

    图  12  行波窗模型图

    Figure  12.  Model diagram of TWC window with TE11 mode

    图  13  传输TE11线极化模式圆波导窗二次电子倍增模拟结果,对应于驻波窗(ETE11=60 kV/cm, R=15 mm, f=11.4 GHz, Γ=0.05)

    Figure  13.  Simulation results of multipactor of TE11 linear polarization mode circular waveguide window (ETE11=60 kV/cm, R=15 mm, f=11.4 GHz, Γ=0.05, corresponding to standing wave window)

    图  14  传输TE11线极化模式圆波导窗二次电子倍增模拟结果,对应于行波窗(ETE11=60 kV/cm, R=15 mm, f =11.4 GHz, Γ=0.95)

    Figure  14.  Simulation results of multipactor of TE11 linear polarization mode circular waveguide window (ETE11=60 kV/cm, R=15 mm, f =11.4 GHz, Γ=0.95, corresponding to standing wave window)

    图  15  TE10-TE01模式变换器[2, 32-33]

    Figure  15.  TE10-TE01 mode converters

    图  16  TE012模式输能窗示意图

    Figure  16.  Model diagram of TE012 mode window

    图  17  TE11+TM11复合模式输能窗模式分布图[2]

    Figure  17.  Electric field mode distribution of TE11+TM11 mixed mode window

    图  18  复合模式输能窗示意图

    Figure  18.  Model diagram of mixed mode window

    图  19  三维周期性波状表面[51]

    Figure  19.  Morphology of the 3-D periodic wavy surface

    图  20  加工前后 95% Al2O3陶瓷表面形貌轮廓及研磨前后 95% Al2O3陶瓷表面显微形貌

    Figure  20.  Surface topography of the insulator before and after grinding and SEN images of the insulator’s surface before and after grinding

    图  21  三相点[54]

    Figure  21.  Triple point

    图  22  石英窗二次电子倍增阈值与静电场振幅的关系[56]

    Figure  22.  Dependence of the multipactor threshold on the amplitude of the electrostatic field for quartz disks

    图  23  外置单向直流偏置电场的二次电子倍增原理图[57]

    Figure  23.  Schematic of the multipactor with an external unidirectional DC bias electric field

    图  24  直流磁场作用下平均电子能量Eav与电子数Ne的演化,Ey=0.8 MV/m

    Figure  24.  Evolution of the average electron energy Eav and electron number Ne, Ey=0.8 MV/m

    图  1  熊猫保偏型有源激光光纤(左)及无源匹配光纤(右)

    表  1  各个频段典型的高功率速调管及其使用的输能窗

    Table  1.   High power klystrons and their HPM windows

    bandaffiliationmodel number of klystronfrequency/GHzpeak power/MWpulse width/μstype of output window
    L TED TH1803 1.3 20 150 pill-box (double)
    CPI VKL-8301 1.3 10 1500 pill-box (double)
    TETD E3736H 1.3 10 1500 pill-box (double)
    S TETD E3712 2.856 100 1.0 pill-box (double)
    IECAS 2.856 120 2.0 pill-box (double)
    TED TH2153 2.998 150 1.2
    CPI VKS-8333 2.998 150 3.0 pill-box (four)
    C TETD E3746 5.712 50 2.5 TWC with TE11 mode (double)
    X TETD E3761 11.424 57.5 1.5 TWC with TE01 mode (double)
    SLAC XL4 11.424 50 1.5 TWC with TE01 mode (double)
    TETD E3768 11.424 75 1.6 mixed-mode (double)
    BVERI 11.424 50 3.6 TWC with TE01 mode (double)
    CPI VKX-8311A 11.994 52 1.5 TWC with TE01 mode (double)
    SLAC XL5 11.994 50 1.5 TWC with TE01 mode (double)
    Note: SLAC—Stanford Linear Accelerator Center (USA);CPI—Communications & Power Industries (Canada); TETD—Toshiba Electron Tubes & Devices Co., Ltd (Japan);TED—Thales Electron Devices (France);IECAS—Institute of Electronics, Chinese Academy of Sciences (China);BVERI—Beijing Vacuum Electronics Research Institute (China).
    下载: 导出CSV

    表  1  保偏型有源激光光纤产品参数表

    几何参数 单位 实测值
    core diameter/纤芯直径 μm 25.07
    cladding Diameter/包层直径 μm 402.3
    coating Diameter/涂覆直径 μm 557.2
    core/clad offset/偏心度 μm 0.54
    cladding non-circularity/不圆度 N/A 0.46%
    proof test/应力测试 Kpsi 100
    光学参数 单位 实测值
    operating wavelength/应用波长 nm 1030~1115
    cladding pump absorption@915nm/包层吸收 dB/m 0.55
    core NA/纤芯-数值孔径NA N/A 0.066
    cladding NA(≥5%)/包层-数值孔径NA N/A ≥0.46
    birefringence/双折射系数 N/A 3.6×10−4
    下载: 导出CSV
  • [1] 丁耀根. 大功率速调管的设计制造和应用[M]. 北京: 国防工业出版社, 2010.

    Ding Yaogen. Desgin, manufacture and application of high power klystron. Beijing: National Defence Industry Press, 2010
    [2] Kazakov S. High-power RF sources and components for linear colliders[R]. Fermi National Accelerator Laboratory, 2007, 15.
    [3] 丁耀根. 大功率速调管的技术现状和最新进展[J]. 真空电子技术, 2020(1):1-25. (Ding Yaogen. Technical status and latest progress of high power klystron[J]. Vacuum Electronics, 2020(1): 1-25
    [4] 朱小芳, 胡权, 胡玉禄, 等. 大功率同轴与波导窗的结构与设计原理综述[J]. 真空科学与技术学报, 2016, 36(3):340-350. (Zhu Xiaofang, Hu Quan, Hu Yulu, et al. A review of the structure and design principle of high-power coaxial and waveguide windows[J]. Chinese Journal of Vacuum Science and Technology, 2016, 36(3): 340-350
    [5] Bohlen H P. Advanced high-power microwave vacuum electron device development[C]//Proceedings of the Particle Accelerator Conference. 1999: 445-449.
    [6] 储开荣, 窦钺, 盛兴, 等. X波段高峰值功率TE01模式圆波导行波窗的研制[J]. 真空电子技术, 2017(6):31-35. (Chu Kairong, Dou Yue, Sheng Xing, et al. Development of X-band peak power TE01 mode circular waveguide traveling window[J]. Vacuum Electronics, 2017(6): 31-35
    [7] 储开荣, 盛兴, 李冬凤, 等. X波段50 MW速调管的研制[J]. 强激光与粒子束, 2020, 32:103012. (Chu Kairong, Sheng Xing, Li Dongfeng, et al. Development of X-band 50 MW klystron[J]. High Power Laser and Particle Beams, 2020, 32: 103012
    [8] Miura A, Matsumoto H. Development of an S-band RF window for linear colliders[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1993, 334(2/3): 341-352.
    [9] Michizono S, Saito Y, Fukuda S, et al. RF windows used at S-band pulsed klystrons in the KEK linac[J]. Vacuum, 1996, 47(6/8): 625-628.
    [10] 张雪, 徐强, 王勇, 等. 高功率盒形窗内次级电子倍增效应[J]. 强激光与粒子束, 2016, 28:023004. (Zhang Xue, Xu Qiang, Wang Yong, et al. Secondary electron multiplier effect in high power box window[J]. High Power Laser and Particle Beams, 2016, 28: 023004 doi: 10.11884/HPLPB201628.023004
    [11] Michizono S, Saito Y. Surface discharge and surface potential on alumina RF windows[J]. Vacuum, 2001, 60: 235-239. doi: 10.1016/S0042-207X(00)00380-8
    [12] Sakai T, Sato I, Hayakawa K, et al, S-band klystron for long pulse operation[C]//Proceedings of International Linear Accelerator Conference. 2002. 712-714.
    [13] Michizono S. Secondary electron emission from alumina RF windows[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(3): 583-592. doi: 10.1109/TDEI.2007.369517
    [14] Neuber A, Dickens J, Hemmert D, et al. Window breakdown caused by high-power microwaves[J]. IEEE Trans Plasma Science, 1998, 26(3): 296-303. doi: 10.1109/27.700757
    [15] Neuber A, Hemmert D, Krompholz H, et al. Initiation of high power microwave dielectric interface breakdown[J]. Journal of Applied Physics, 1999, 86(3): 1724-1728. doi: 10.1063/1.370953
    [16] 张雪, 王勇, 范俊杰, 等. TM11模对高功率盒形窗次级电子倍增效应影响的研究[J]. 真空电子技术, 2014(04):19-23. (Zhang Xue, Wang Yong, Fan Junjie, et al. Research on the influence of TM11 on secondary electron multiplication effect of high power box-shaped windows[J]. Vacuum Electronics, 2014(04): 19-23 doi: 10.3969/j.issn.1002-8935.2014.04.006
    [17] Zhu Xiaofang, Hao Yiliang, Hu Yulu, et al. Scattering matrix analysis of a high-power pill-box-type window without ghost mode[C]//International Vacuum Electronics Conference. 2017.
    [18] 张志强, 罗积润, 张兆传. S波段大功率宽带速调管输出窗鬼模振荡的抑制[J]. 电子与信息学报, 2017, 39(3):731-736. (Zhang Zhiqiang, Luo Jirun, Zhang Zhaochuan. Suppression of ghost mode oscillation in output window of S-band high power broadband klystron[J]. Journal of Electronics and Information Technology, 2017, 39(3): 731-736
    [19] Cai Jinchi, Hu Linlin, Ma Guowu, et al. Theoretical and experimental study of the modified pill-box window for the 220-GHz folded waveguide BWO[J]. IEEE Trans Plasma Science, 2014, 42(10): 3349-3357. doi: 10.1109/TPS.2014.2349919
    [20] Hu Peng, Lei Wenqiang, Jiang Yi, et al. The vacuum window for 0.34-THz folded waveguide traveling wave tube[C]//International Vacuum Electronics Conference. 2019.
    [21] Yang Tongbin, Lu Dun, Fu Wenjie, et al. A broadband low-leoss W-band pill-box window[C]//International Vacuum Electronics Conference. 2019.
    [22] Otake Y, Tokumoto S, Kazakov S Y, et al. High-power tests of X-band RF windows at KEK[C]//Proceedings of the Third Workshop on Pulsed RF Sources for Linear Colliders. 1996, 30: 315-322.
    [23] Zhang Xue, Wang Yong, Fan Junjie, et al. Development of new pill-box window for S-band high power klystron[J]. Journal of Electronics, 2014, 31(1): 78-84.
    [24] Zhang Xue, Tang Haobei, Chen Xuyuan, et al. Multipactor discharge in circular waveguide window[J]. Physics of Plasmas, 2020, 27: 043504. doi: 10.1063/1.5142341
    [25] Otake Y, Tokumoto S, Mizuno H. Design and high-power test of a TE11-mode X-band RF window with taper transitions[C]//Proceedings of the Particle Accelerator Conference. 1995: 1590-1592.
    [26] 柴媛媛, 刘庆想, 张健穹, 等. X波段新型圆波导输出窗的研究[J]. 微波学报, 2014(s1):525-527. (Chai Yuanyuan, Liu Qingxiang, Zhang Jianqiong, et al. Research on a new X-band circular waveguide output window[J]. Journal of Microwaves, 2014(s1): 525-527
    [27] Kazakov S Y. Increased power RF-window[C]//BINP Preprint. 1992.
    [28] Michizono S, Saito Y, Mizuno H, et al. High-power test of pill-box and TW-in-ceramic type S-band windows[C]//Proceedings of the 17th International Linac Conference. 1994: 21-26.
    [29] Buyanova M N, Nechaev V E, Semenov V E. Multipactor discharge on a dielectric surface in the field of circularly polarized plane wave[J]. Radio physics and Quantum Electron, 2007, 50(10/11): 893-907.
    [30] Fowkes W, Callin R S, Tantawi S G, et al. Reduced field TE01/X-band travelling wave window[C]//Proceedings of the Particle Accelerator Conference 1995: 1587-1589.
    [31] Fowkes W R, Jongewaard E N, Callin R S, et al. Design considerations for very high power RF windows at X-band[C]//Proceedings of the 19th International Linear Accelerator Conference: 1998: 243.
    [32] Fowkes W R, Callin R S, Jongewaard E N, et al. Large diameter reduced field TE01 traveling wave window for X-band[C]//Proceedings of the 1999 Particle Accelerator Conference. 1999.
    [33] Kazakov S. New compact TE10–TE01 mode converter and TE01-TE02 window[R]. ISG-8, 24-28, 2002.
    [34] Michizono S, Matsumoto T, Nakao K, et al. Development of C-band high-power mix-mode RF windows[C]//Proceedings of Linear Accelerator Conference. 2004.
    [35] Kazakov S Y. A New Traveling-wave mixed-mode RF window with a low electric field in ceramic-metal brazing area[J]. KEK Preprint, 1998-8: 98-120.
    [36] Tokumoto S, Chin Y H, Mizuno H, et al. High power testing results of the X-band mixed-mode RF windows for linear colliders[C]//Linear Accelerator Conference. 2000: 21-25.
    [37] Kazakov S, Higo T, Matsumoto S. TE11/TM11 mixed-mode wave guide valve at X-band[C]//Proceedings of IPAC. 2010.
    [38] Yamaguchi S, Matsumoto S, Tokumoto S, et al. High-power test results of Kazakov RF window[C]//Linear Accelerator Conferenc. 1999.
    [39] Joo Y, Lee B J, Kong H S, et al. Development of new S-band RF window for stable high-power operation in linear accelerator RF system[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2017, 866: 1-8.
    [40] 常超. 高功率微波系统中的击穿机理[J]. 北京: 科学出版社, 2015.

    Chang Chao. Breakdown mechanism in high power microwave system[J]. Beijing: Science Press, 2015
    [41] Miller H C. Flashover of insulators in vacuum: the last twenty years[J]. IEEE Trans Dielectrics and Electrical Insulation, 2015, 22(6): 3641-3657.
    [42] Michizono S. TiN film coatings on alumina radio frequency windows[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992, 10(4): 1180-1184.
    [43] 焦晓静, 苏党帅, 王茜. TiN镀层对射频器件表面二次电子倍增的抑制作用[J]. 微波学报, 2012(s1):282-287. (Jiao Xiaojing, Su Dangshuai, Wang Qian. Suppression of surface multipactor in RF devices by TiN coating[J]. Journal of Microwaves, 2012(s1): 282-287
    [44] Peng Zhen, Chen Gen, Zhao Yanping, et al. Investigation of TiN film on an RF ceramic window by atomic layer deposition[J]. Journal of Vacuum Science & Technology A, 2020, 38: 052401.
    [45] 刘湘龙, 李晓云, 杨建, 等. 真空电绝缘性能的影响[J]. 人工晶体学报, 2014, 43(3):857-861. (Liu Xianglong, Li Xiaoyun, Yang Jian, et al. Effect of Chromium doping on vacuum electrical insulation performance of alumina ceramics[J]. Journal of Synthetic Crystals, 2014, 43(3): 857-861
    [46] Huo Yankun, Liu Wenyuan, Guo Yuewen, et al. Molecule self-assembly on alumina ceramic insulator to enhance its vacuum surface voltage withstand strength[J]. Journal of Applied Physics, 2020, 127: 243304. doi: 10.1063/5.0006233
    [47] Chang Chao, Liu Guozhi, Huang Haojie, et al. Suppressing high-power microwave dielectric multipactor by the sawtooth surface[J]. Physics of Plasmas, 2009, 16: 083501. doi: 10.1063/1.3200900
    [48] Cheng Guoxin, Cai Dan, Hong Zhiqiang, et al. Variation in time lags of vacuum surface flashover utilizing a periodically grooved dielectric[J]. IEEE Trans Dielectrics and Electrical Insulation, 2013, 20(5): 1942-1950. doi: 10.1109/TDEI.2013.6633728
    [49] Cai Libing, Wang Jianguo, Cheng Guoxin, et al. Self-consistent simulation of radio frequency multipactor on micro-grooved dielectric surface[J]. Journal of Applied Physics, 2015, 117: 053302. doi: 10.1063/1.4907683
    [50] Zhang Xue, Wang Yong, Fan Junjie, et al. The suppression effect of a periodic surface with semicircular grooves on the high power microwave long pill-box window multipactor phenomenon[J]. Physics of Plasmas, 2014, 21: 092101. doi: 10.1063/1.4894222
    [51] Chang Chao, Liu Yansheng, Verboncoeur J, et al. The effect of periodic wavy profile on suppressing window multipactor under arbitrary electromagnetic mode[J]. Applied Physics Letters, 2015, 106: 014102. doi: 10.1063/1.4905280
    [52] Chang Chao, Verboncoeur J, Wei Fuli, et al. Nanosecond discharge at the interfaces of flat and periodic ripple surfaces of dielectric window with air at varied pressure[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(1): 375-381. doi: 10.1109/TDEI.2016.006047
    [53] 田志英, 尚阿曼, 张巨先. 氧化铝陶瓷表面状态对其真空耐压性能的影响[J]. 真空科学与技术学报, 2015, 35(10):1169-1173. (Tian Zhiying, Shang Aman, Zhang Juxian. Effect of surface state of alumina ceramic on its vacuum compressive resistance[J]. Chinese Journal of Vacuum Science and Technology, 2015, 35(10): 1169-1173
    [54] Jordan N M, Lau Y Y, French D M, et al. Electric field and electron orbits near a triple point[J]. Journal of Applied Physics, 2007, 102: 033301. doi: 10.1063/1.2764211
    [55] Foster J, Thomas M, Neuber A A. Variation in the statistical and formative time lags of high power microwave surface flashover utilizing a superimposed dc electric field[J]. Journal of Applied Physics, 2009, 106: 063310. doi: 10.1063/1.3226866
    [56] Ivanov O A, Lobaev M A, Isaev V A, et al. Suppressing and initiation of multipactor discharge on a dielectric by an external dc bias[J]. Physical Review Special Topics - Accelerators and Beams, 2010, 13: 022004. doi: 10.1103/PhysRevSTAB.13.022004
    [57] Zhang Jianwei, Luo Wei, Wang Hongguang, et al. Suppression of high-power microwave window breakdown by the sweeping-out-electron effect with an external dc bias electric field[J]. Physics of Plasmas, 2019, 26: 123503. doi: 10.1063/1.5123411
    [58] Valfells A, Ang L K, Lau Y Y, et al. Effects of an external magnetic field, and of oblique radio-frequency electric fields on multipactor discharge on a dielectric[J]. Physics of Plasmas, 2000, 7(2): 750. doi: 10.1063/1.873861
    [59] Chang Chao, Liu Guozhi, Tang Chuanxiang, et al. Suppression of high-power microwave dielectric multipactor by resonant magnetic field[J]. Applied Physics Letters, 2010, 96: 111502. doi: 10.1063/1.3360853
    [60] Zhang Xue, Wang Yong, Fan Junjie. The suppression effect of external magnetic field on the high-power microwave window multipactor phenomenon[J]. Physics of Plasmas, 2015, 22: 022110. doi: 10.1063/1.4907248
    [61] Semenov V, Kryazhev A, Anderson D, et al. Multipactor suppression in amplitude modulated radio frequency fields[J]. Physics of Plasmas, 2001, 8(11): 5034-5039. doi: 10.1063/1.1410980
    [62] Anza S, Mattes M, Vicente C, et al. Multipactor theory for multicarrier signals[J]. Physics of Plasmas, 2011, 18: 032105. doi: 10.1063/1.3561821
    [63] Rice S A, Verboncoeur J P. Migration of multipactor trajectories via higher-order mode perturbation[J]. IEEE Trans Plasma Science, 2017, 45: 1739-1745. doi: 10.1109/TPS.2017.2704522
    [64] Iqbal A, Verboncoeur J, Zhang P. Multipactor susceptibility on a dielectric with two carrier frequencies[J]. Physics of Plasmas, 2018, 25: 043501. doi: 10.1063/1.5024365
    [65] Iqbal A, Wong P Y, Verboncoeur J P, et al. Frequency-domain analysis of single-surface multipactor discharge with single- and dual-tone RF electric fields[J]. IEEE Trans Plasma Science, 2020, 48(6): 1950-1958. doi: 10.1109/TPS.2020.2978785
    [66] Wen D Q, Iqbal A, Zhang P, et al. Suppression of single-surface multipactor discharges due to non-sinusoidal transverse electric field[J]. Physics of Plasmas, 2019, 26: 093503. doi: 10.1063/1.5111734
  • 加载中
图(25) / 表(2)
计量
  • 文章访问数:  1735
  • HTML全文浏览量:  313
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-06
  • 修回日期:  2020-11-04
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回