留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分层视角下无线通信网络高空电磁脉冲效应

杜传报 毛从光 崔志同 刘政 石跃武 王伟 聂鑫

杜传报, 毛从光, 崔志同, 等. 分层视角下无线通信网络高空电磁脉冲效应[J]. 强激光与粒子束, 2021, 33: 103004. doi: 10.11884/HPLPB202133.210230
引用本文: 杜传报, 毛从光, 崔志同, 等. 分层视角下无线通信网络高空电磁脉冲效应[J]. 强激光与粒子束, 2021, 33: 103004. doi: 10.11884/HPLPB202133.210230
Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Analysis of high-altitude electromagnetic pulse effect on wireless communication network from hierarchical perspective[J]. High Power Laser and Particle Beams, 2021, 33: 103004. doi: 10.11884/HPLPB202133.210230
Citation: Du Chuanbao, Mao Congguang, Cui Zhitong, et al. Analysis of high-altitude electromagnetic pulse effect on wireless communication network from hierarchical perspective[J]. High Power Laser and Particle Beams, 2021, 33: 103004. doi: 10.11884/HPLPB202133.210230

分层视角下无线通信网络高空电磁脉冲效应

doi: 10.11884/HPLPB202133.210230
详细信息
    作者简介:

    杜传报,duchuanbao@nint.ac.cn

    通讯作者:

    毛从光,maocongguang@nint.ac.cn

  • 中图分类号: TM937;O441

Analysis of high-altitude electromagnetic pulse effect on wireless communication network from hierarchical perspective

  • 摘要: 从分层视角研究无线通信网络高空电磁脉冲效应,提出了一种具有层级属性的网络级效应评估方法。设计研制了一种无线通信网络效应试验仿真平台,网络使用典型全连通拓扑结构,网络节点使用超外差式收发机,网络运行在超短波频段。开展了小型网络脉冲辐照效应试验和效应机理分析,网络仿真研究了网络规模不同条件下节点失效概率对网络性能的影响。得到以下结论:(1)设备级效应对低层级效应具备一定冗余容错能力,这取决于效应评价指标的选择和损伤组件的功能属性;(2)网络级效应对设备级效应具有潜在放大效果,个别节点失效可能造成网络性能严重下降甚至瘫痪。
  • 图  1   网络评估指标

    Figure  1.  Network assessment indicators

    图  2  网络评估流程和应力-强度干涉模型

    Figure  2.  Assessment flow and stress-strength interference model

    图  3  网络评估模型

    Figure  3.  Network assessment model

    图  4  网络级效应试验平台

    Figure  4.  Network-level effect test platform

    图  5  通信节点结构示意和样机照

    Figure  5.  Communication node structure diagram and sample photo

    图  6  全连通网络效应仿真平台仿真界面

    Figure  6.   FCN effect simulation platform

    图  7  试验测试波形

    Figure  7.  Test waves

    图  8  网络吞吐量统计结果

    Figure  8.  Statistical results of network throughput

    图  9  失效检测结果

    Figure  9.  Failure detection results

    图  10  吞吐量仿真结果

    Figure  10.   Network throughput simulation results

    表  1  基于层级关系的效应现象列表

    Table  1.   List of effect phenomena based on hierarchy

    layereffect(indicator)effect type
    networkthroughput declined rapidlyperformance degradation
    equipmentreceive sensitivity declined by 30~50 dBperformance degradation
    componentLNA grain declined by 30~50 dBdamage
    devicethe internal triodes of LNA have different degrees of breakdowndamage
    下载: 导出CSV
  • [1] 毛从光, 程引会, 谢彦召. 高空电磁脉冲技术基础[M]. 北京: 科学出版社, 2019

    Mao Congguang, Cheng Yinhui, Xie Yanzhao. Fundamentals of high altitude electromagnetic pulse technology[M]. Beijing: Science Press, 2019
    [2] 周璧华, 陈彬, 石立华. 电磁脉冲及其工程防护[M]. 北京: 国防工业出版社, 2003

    Zhou Bihua, Chen Bin, Shi Lihua. EMP and EMP protection[M]. Beijing: National Defense Industry Press, 2003
    [3] Giri D V, Hoad R, Sabath F. High-power electromagnetic effects on electronic systems[M]. Norwood: Artech House, 2020: 20-30.
    [4] Foster J S Jr, Gjelde E, Graham W R, et al. Report of the commission to assess the threat to the United States from electromagnetic pulse (EMP) attack: critical national infrastructures[R]. EMP Commission USA, 2008.
    [5] GJB538-88, 半导体器件电磁脉冲损伤阈值试验方法[S]

    GJB538-88, 半导体器件电磁脉冲损伤阈值试验方法[S]. (GJB538-88, Test method for electromagnetic pulse damage threshold of semiconductor devices[S]
    [6] 汪海洋, 周翼鸿, 李家胤, 等. 低噪声放大器有意电磁干扰效应(英文)[J]. 强激光与粒子束, 2011, 23(11):2865-2871. (Wang Haiyang, Zhou Yihong, Li Jiayin, et al. LNA malfunctions under intentional electromagnetic interference[J]. High Power Laser and Particle Beams, 2011, 23(11): 2865-2871 doi: 10.3788/HPLPB20112311.2865
    [7] 任兴荣. 半导体器件的电磁损伤效应与机理研究[D]. 西安: 西安电子科技大学, 2014

    Ren Xingrong. Research on the electromagnetic damage effects and mechanisms of semiconductor devices[D]. Xi’an: Xidian University, 2014
    [8] 王洋. 接收机前端低噪声放大器设计及其电磁脉冲防护研究[D]. 上海: 上海交通大学, 2011

    Wang Yang. Design and electromagnetic pulse protection research of receiver front-end LNA[D]. Shanghai: Shanghai Jiao Tong University, 2011
    [9] Camp M, Gerth H, Garbe H, et al. Predicting the breakdown behavior of microcontrollers under EMP/UWB impact using a statistical analysis[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 368-379. doi: 10.1109/TEMC.2004.831816
    [10] Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 380-389. doi: 10.1109/TEMC.2004.831842
    [11] Coburn W O, Nguyen E, Reyzer R J, et al. High-altitude electromagnetic pulse survivability assessment of the Harris RF-3200 transceiver[R]. AD-A258 347, Adelphi, MD: Harry Diamond Laboratories, 1992.
    [12] Hoad R, Carter N J, Herke D, et al. Trends in EM susceptibility of IT equipment[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(3): 390-395. doi: 10.1109/TEMC.2004.831815
    [13] Hoad R, Carter N J, Herke D, et al. An investigation into radiated susceptibility of IT networks[C]//Proceedings of the International Symposium on Electromagnetic Compatibility. Eindhoven, The Netherland: QinetiQ, Electromagnetic Compatibility Group, 2004.
    [14] IEC TR 61000-1-3, Electromagnetic compatibility (EMC) –part 1-3: general – the effects of high-altitude EMP (HEMP) on civil equipment and systems[S].
    [15] IEC 61000-5-9, Electromagnetic compatibility (EMC) - part 5-9: installation and mitigation guidelines – system-level susceptibility assessments for HEMP and HPEM[S].
    [16] Frank H, Frisch I. Analysis and design of survivable networks[J]. IEEE Transactions on Communication Technology, 1970, 18(5): 501-519. doi: 10.1109/TCOM.1970.1090419
    [17] 魏福林. 野战地域通信网拓扑层抗毁性研究[D]. 郑州: 解放军信息工程大学, 2006

    Wei Fulin. Research on invulnerability based on topological structure of regional communication networks[D]. Zhengzhou: Information Engineering University, 2006
    [18] Mao Congguang, Canavero F. System-level vulnerability assessment for EME: from fault tree analysis to Bayesian networks—part I: methodology framework[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 180-187. doi: 10.1109/TEMC.2015.2484067
    [19] Mao Congguang, Canavero F G, Cui Zhitong, et al. System-level vulnerability assessment for EME: from fault tree analysis to Bayesian networks-part II: illustration to microcontroller system[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(1): 188-196. doi: 10.1109/TEMC.2015.2502591
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  907
  • HTML全文浏览量:  407
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-10
  • 修回日期:  2021-09-20
  • 网络出版日期:  2021-10-21
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回