留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses

Sun Yi Chai Changchun Liu Yuqian Li Fuxing Yang Yintang

孙毅, 柴常春, 刘彧千, 等. 电磁脉冲对CMOS与非门的干扰和损伤效应与机理[J]. 强激光与粒子束, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316
引用本文: 孙毅, 柴常春, 刘彧千, 等. 电磁脉冲对CMOS与非门的干扰和损伤效应与机理[J]. 强激光与粒子束, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316
Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser and Particle Beams, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316
Citation: Sun Yi, Chai Changchun, Liu Yuqian, et al. Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses[J]. High Power Laser and Particle Beams, 2021, 33: 103006. doi: 10.11884/HPLPB202133.210316

电磁脉冲对CMOS与非门的干扰和损伤效应与机理

doi: 10.11884/HPLPB202133.210316
详细信息
  • 中图分类号: TN386.1

Upset and damage effects and mechanisms of CMOS NAND gate caused by electromagnetic pulses

Funds: supported by National Natural Science Foundation of China (61974116)
More Information
  • 摘要: 利用Sentaurus-TCAD建立了CMOS与非门电路的二维电热模型,仿真研究了在电磁脉冲注入下,CMOS与非门电路产生的扰乱和损伤效应及其机理。结果表明,在EMP注入下,电路输出电压、内部的峰值温度呈周期性的“下降-上升”,当注入功率较大时,EMP撤销后输出电压停留在异常值,PMOS源极电流增加,温度不断上升,最终烧毁在PMOS源极,这是因为器件内部产生了闩锁效应。随着脉宽的增加, 损伤功率阈值减小而损伤能量阈值增大,通过数据拟合得到脉宽与损伤功率阈值和损伤能量阈值的关系。该结果可对EMP损伤效应进行评估并对器件级EMP抗毁伤加固设计具有指导作用。 
  • Figure  1.  Basic structure diagram of NAND gate

    Figure  2.  Device structure

    Figure  3.  Output voltage and power supply current vs time under different frequencies

    Figure  4.  Distribution of current density under microwave signal injection

    Figure  5.  Peak temperature vs time under different power

    Figure  6.  Distribution of current density when a 1 GHz, 9.5 dBm microwave signal is injected

    Figure  7.  Distribution of internal temperature when a 1 GHz, 9.5 dBm microwave signal is injected

    Figure  8.  Distribution of temperature in 33 ns

    Figure  9.  Peak temperature and output voltage vs time

    Figure  10.  Distribution of temperature in 9.7 ns

    Figure  11.  Energy threshold and power threshold vs pulse-width of EMP

  • [1] Kim K, Iliadis A A. Operational upsets and critical new bit errors in CMOS digital inverters due to high power pulsed electromagnetic interference[J]. Solid-State Electronics, 2010, 54(1): 18-21. doi: 10.1016/j.sse.2009.09.006
    [2] Iliadis A A, Kim K. Theoretical foundation for upsets in CMOS circuit due to high-power electromagnetic interference[J]. IEEE Trans Device Mater Reliab, 2010, 10(3): 347-352. doi: 10.1109/TDMR.2010.2050692
    [3] Chai Changchun, Xi Xiaowen, Ren Xingrong, et al. The damage effect and mechanism of the bipolar transistor induced by the intense electromagnetic pulse[J]. Acta Physica Sinica, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [4] Wang Haiyang, Li Jiayin, Li Hao, et al. Experimental study and SPICE simulation of CMOS inverters latch-up effects due to high power microwave interference[J]. Prog Electromagn Res, 2008, 87: 313-330. doi: 10.2528/PIER08100408
    [5] Mansson D, Thottappillil R, Backstrom M, et al. Susceptibility of civilian GPS receivers to electromagnetic radiation[J]. IEEE Trans Electromagn Compat, 2008, 50(1): 434-437.
    [6] You Hailong, Lan Jianchun, Fan Juping, et al. Research on characteristics degradation of n-metal-oxide-semiconductor field-effect transistor induced by hot carrier effect due to high power microwave[J]. Acta Physica Sinica, 2012, 61: 108501. doi: 10.7498/aps.61.108501
    [7] Backstrom M G, Lovstrand K G. Susceptibility of electronic systems to high-power microwave: summary of test experience[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 396-403. doi: 10.1109/TEMC.2004.831814
    [8] Nitsch D, Camp M, Sabath F, et al. Susceptibility of some electronic equipment to HPEM threats[J]. IEEE Trans Electromagn Compat, 2004, 46(3): 380-387. doi: 10.1109/TEMC.2004.831842
    [9] Vault W L. The damage susceptibility of integrated circuits to a simulated IEMP transient[J]. IEEE Transactions on Nuclear Science, 1973, 20(6): 40-47. doi: 10.1109/TNS.1973.4327371
    [10] Kim K, Iliadis A A. Granatstein V L. Effects of microwave interference on the operational parameters of n-channel enhancement mode MOSFET devices in CMOS integrated circuits[J]. Solid-State Electronics, 2004, 48(10/11): 1795-1799. doi: 10.1016/j.sse.2004.05.015
    [11] Kim K, Iliadis A A. Critical upsets of CMOS inverters in static operation due to high-power microwave interference[J]. IEEE Transactions on Electromagnetic Compatibility, 2007, 49(4): 876-885. doi: 10.1109/TEMC.2007.908820
    [12] Yu X H, Chai C C, Ren X R, et al. Temperature dependence of latch-up effects in CMOS inverter induced by high power microwave[J]. J Semicond, 2014, 35(8): 115-120.
    [13] Yu X H, Chai C C, Liu Y, et al. Modeling and understanding of the frequency dependent HPM upset susceptibility of the CMOS inverter[J]. China Inform Sci, 2015, 58(8): 1-11.
    [14] Yu X H, Chai C C, Qiao L P, et al. Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter[J]. J Semicond, 2015, 36(5): 66-71.
    [15] 2004 ISE-TCAD Dessis simulation user’s manual[M]. Zurich: Integrated Systems Engineering Corp, 2004.
    [16] Donoval D, Vrbicky A, Marek J, et al. Evaluation of the ruggedness of power DMOS transistor from electro-thermal simulation of UIS behavior[J]. Solid-State Electronics, 2008, 52(6): 892-898.
    [17] TEXAS INSTRUMENTS. SN74LVC1G00 Single 2-input positive-NAND gate [EB/OL]. https://www.ti.com/cn/lit/d s/symlink/sn74lvc1g00.pdf?ts=1630386223722
    [18] Tasca D M. Pulse power failure modes in semiconductors[J]. IEEE Transactions on Nuclear Science, 1970, 17(6): 364-372.
    [19] Brown W D. Semiconductor device degradation by high amplitude current pulses[J]. IEEE Transactions on Nuclear Science, 1972, 19(6): 68-75.
    [20] Jenkins C R, Durgin D L. EMP susceptibility of integrated circuits[J]. IEEE Transactions on Nuclear Science, 1975, 22(6): 2494-2499.
  • 加载中
图(11)
计量
  • 文章访问数:  761
  • HTML全文浏览量:  342
  • PDF下载量:  77
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-24
  • 修回日期:  2021-10-21
  • 网络出版日期:  2021-10-22
  • 刊出日期:  2021-10-15

目录

    /

    返回文章
    返回