留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

混响室内加载物损耗特性试验研究

贾锐 耿利飞 王川川 郭浩 李新峰

贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039
引用本文: 贾锐, 耿利飞, 王川川, 等. 混响室内加载物损耗特性试验研究[J]. 强激光与粒子束, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039
Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039
Citation: Jia Rui, Geng Lifei, Wang Chuanchuan, et al. Research on the characteristics of lossy objects in a reverberation chamber[J]. High Power Laser and Particle Beams, 2022, 34: 113003. doi: 10.11884/HPLPB202234.220039

混响室内加载物损耗特性试验研究

doi: 10.11884/HPLPB202234.220039
基金项目: 国家自然科学基金项目(61801480)
详细信息
    作者简介:

    贾 锐,jiarui315@163.com

  • 中图分类号: O441;TM937

Research on the characteristics of lossy objects in a reverberation chamber

  • 摘要: 为研究混响室加载效应,首先分析了混响室内各损耗途径,得出加载损耗是混响室测试过程中唯一人为可控的损耗路径。构建了常见的5种不同测试场景,利用时域法分别对这5种测试场景条件下的混响室品质因数进行测试并进行分析。结果表明,金属天线支架造成的加载效应最小,非金属天线支架会对混响室造成明显加载,降低混响室的品质因数,且随着非金属天线支架数量的增多,这种效应会愈发明显。此外,对加载物的平均吸收截面进行了研究,将混响室内所有加载物视为一个加载吸收截面,得到金属天线支架的吸收截面最小,非金属天线支架的加载吸收截面有明显增加。
  • 图  1  混响室多边界条件下的平均功率时延分布

    Figure  1.  Average PDP from all stirrer positions

    图  2  时域法与频域法测试结果对比

    Figure  2.  Comparison of the time domain and frequency domain method

    图  3  四种混响室加载测试场景

    Figure  3.  Four test scenarios in a reverberation chamber

    图  4  不同场景下的混响室品质因数实测数据

    Figure  4.  Measured value of Q factor from 5 test senarios

    图  5  不同加载物损耗量

    Figure  5.  Loss of load in 5 test scenarios

    图  6  不同测试场景的加载物吸收截面

    Figure  6.  Absorption cross sections (ACS) of load in 5 scenarios

  • [1] Migliaccio M, Gradoni G, Arnaut L R. Electromagnetic reverberation: the legacy of Paolo Corona[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 643-652. doi: 10.1109/TEMC.2016.2546183
    [2] Tian Zhihao, Huang Yi, Shen Yaochun, et al. Efficient and accurate measurement of absorption cross section of a lossy object in reverberation chamber using two one-antenna methods[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 686-693. doi: 10.1109/TEMC.2016.2527363
    [3] Xu Qian, Huang Yi, Xing Lei, et al. B-scan in a reverberation chamber[J]. IEEE Transactions on Antennas and Propagation, 2016, 64(5): 1740-1750. doi: 10.1109/TAP.2016.2535121
    [4] 程二威, 王平平, 赵敏, 等. 边界形变混响室设计与性能评估[J]. 强激光与粒子束, 2021, 33:123002

    Cheng Erwei, Wang Pingping, Zhao Min, et al. Design and performance evaluation of boundary deformation reverberation chamber[J]. High Power Laser and Particle Beams, 2021, 33: 123002
    [5] 姜林, 王庆国, 程二威. 机械搅拌混响室独立样本数建模及实验[J]. 强激光与粒子束, 2013, 25(11):3050-3054 doi: 10.3788/HPLPB20132511.3050

    Jiang Lin, Wang Qingguo, Cheng Erwei. Modelling and experimental study of the number of independent samples in reverberation chamber with mechanical stirring[J]. High Power Laser and Particle Beams, 2013, 25(11): 3050-3054 doi: 10.3788/HPLPB20132511.3050
    [6] Kim J S, Mittra R. Performance evaluation of a mode-stirred reverberation chamber using the finite difference time domain (FDTD) simulation[C]//Proceedings of 2021 Asia-Pacific Symposium on Electromagnetic Compatibility. 2012: 173-176.
    [7] Harima K, Yamanaka Y. FDTD analysis on the effect of stirrers in a reverberation chamber[C]//Proceedings of 1999 International Symposium on Electromagnetic Compatibility. 1999: 260-263.
    [8] Primiani V M, Moglie F. Reverberation chamber performance varying the position of the stirrer rotation axis[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(2): 486-489. doi: 10.1109/TEMC.2013.2285313
    [9] Bastianelli L, Primiani V M, Moglie F. Stirrer efficiency as a function of its axis orientation[J]. IEEE Transactions on Electromagnetic Compatibility, 2015, 57(6): 1732-1735. doi: 10.1109/TEMC.2015.2477465
    [10] Moglie F, Bastianelli L, Primiani V M. Reliable finite-difference time-domain simulations of reverberation chambers by using equivalent volumetric losses[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(3): 653-660. doi: 10.1109/TEMC.2016.2548520
    [11] Carlberg U, Kildal P S, Carlsson J. Numerical study of position stirring and frequency stirring in a loaded reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2009, 51(1): 12-17. doi: 10.1109/TEMC.2008.2011818
    [12] Zhao Huapeng, Shen Zhongxiang. Fast wideband analysis of reverberation chambers using hybrid discrete singular convolution-method of moments and adaptive frequency sampling[J] IEEE Transactions on Magnetics, 2015, 51: 7206804.
    [13] IEC 61000-4-21, Electromagnetic compatibility (EMC) - Part 4-21: testing and measurement techniques—reverberation chamber test methods[S].
    [14] Xu Qian, Huang Yi, Xing Lei, et al. Average absorption coefficient measurement of arbitrarily shaped electrically large objects in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2016, 58(6): 1776-1779. doi: 10.1109/TEMC.2016.2587679
    [15] Carlberg U, Kildal P S, Wolfgang A, et al. Calculated and measured absorption cross sections of lossy objects in reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2004, 46(2): 146-154. doi: 10.1109/TEMC.2004.826878
    [16] Xu Qian, Huang Yi, Xing Lei, et al. Extract the decay constant of a reverberation chamber without satisfying Nyquist criterion[J]. IEEE Microwave and Wireless Components Letters, 2016, 26(3): 153-155. doi: 10.1109/LMWC.2016.2526027
    [17] Cui Y, Wei G, Wang S, et al. Fast calculation of reverberation chamber Q-factor[J]. Electronics Letters, 2012, 48(18): 1116-1117. doi: 10.1049/el.2012.2106
    [18] Wang Song, Wu Zhancheng, Wei Guanghui, et al. A new method of evaluating reverberation chamber Q-factor with experimental validation[J]. Progress in Electromagnetics Research Letters, 2013, 36: 103-112. doi: 10.2528/PIERL12090710
    [19] Clegg J, Marvin A C, Dawson J F, et al. Optimization of stirrer designs in a reverberation chamber[J]. IEEE Transactions on Electromagnetic Compatibility, 2005, 47(4): 824-832. doi: 10.1109/TEMC.2005.860561
  • 加载中
图(6)
计量
  • 文章访问数:  513
  • HTML全文浏览量:  233
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-11
  • 修回日期:  2022-08-30
  • 录用日期:  2022-08-31
  • 网络出版日期:  2022-08-31
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回