留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于重离子治癌回旋引出的实时流强测量系统

游尧尧 李敏 毛瑞士 李维龙 冯永春 赵铁成 杨耀雄 王文韬

游尧尧, 李敏, 毛瑞士, 等. 用于重离子治癌回旋引出的实时流强测量系统[J]. 强激光与粒子束, 2022, 34: 114001. doi: 10.11884/HPLPB202234.220064
引用本文: 游尧尧, 李敏, 毛瑞士, 等. 用于重离子治癌回旋引出的实时流强测量系统[J]. 强激光与粒子束, 2022, 34: 114001. doi: 10.11884/HPLPB202234.220064
You Yaoyao, Li Min, Mao Ruishi, et al. Real-time beam intensity measurement system for extraction section of cyclotron in Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2022, 34: 114001. doi: 10.11884/HPLPB202234.220064
Citation: You Yaoyao, Li Min, Mao Ruishi, et al. Real-time beam intensity measurement system for extraction section of cyclotron in Heavy Ion Medical Machine[J]. High Power Laser and Particle Beams, 2022, 34: 114001. doi: 10.11884/HPLPB202234.220064

用于重离子治癌回旋引出的实时流强测量系统

doi: 10.11884/HPLPB202234.220064
基金项目: 国家自然科学基金项目(11905271)
详细信息
    作者简介:

    游尧尧,youyy2016@impcas.ac.cn

    通讯作者:

    李 敏,limin@impcas.ac.cn

  • 中图分类号: TL506

Real-time beam intensity measurement system for extraction section of cyclotron in Heavy Ion Medical Machine

  • 摘要: 为满足重离子治癌加速器装置(HIMM)回旋加速器引出段束流流强的测量需求,设计了新的束流流强测量系统,该系统利用积分电流变换器(ICT)及锁相放大器等配套电子学,能够实现束流流强的非拦截实时测量。文中首先分析了中能束线(MEBT)束流流强的测量需求,并对设计方案进行了实验室系统分析和在线束流强测量。实验室结果表明,锁相放大器的幅度和相位响应一致性满足测量需求。由于ICT对束流流强的测量是相对测量,先使用法拉第筒对ICT进行在线标定;标定前先对法拉第筒(FC)(20 μA档位)和ICT系统的流强分辨在线测量,分别为6.45 nA和5.163 nA。由于束流抖动的影响,测量的束流的稳定性约90 nA,其对应的相对测量误差约8%,ICT系统响应时间小于1 ms。测量结果表明,该系统满足物理测量需求。回旋加速器高频系统参数变化引起ICT标定系数变化的工作将在进一步工作中展开。
  • 图  1  ICT原理结构示意图

    Figure  1.  Schematic diagram of ICT

    图  2  ICT测量系统架构

    Figure  2.  Measurement architecture of ICT system

    图  3  ICT前置放大器的频率响应曲线

    Figure  3.  Frequency response curve of the preamplifier

    图  4  ICT弱信号及其频域信息

    Figure  4.  Small ICT signal and its frequency information

    图  5  实验室测量SR844幅度和相位响应的示意图

    Figure  5.  Schematic diagram for measuring amplitude and phase resolution of SR844 in laboratory

    图  6  实验室测量的SR844幅度和相位响应测试结果

    Figure  6.  Test results of amplitude and phase response of SR844

    图  7  FC和ICT数据采集系统的分辨率测试结果

    Figure  7.  Resolution results for the FC and ICT data acquisition systems

    图  8  MEBT上的ICT与FC安装示意图

    Figure  8.  Schematic diagram of the ICT and FC installation at MEBT

    图  9  ICT数据采集系统的在束标定结果

    Figure  9.  Calibration results for ICT data acquisition systems

    图  10  ICT和FC在束测量数据

    Figure  10.  Raw ICT and FC data measured with beam

    图  11  ICT系统响应时间的测量(τ=100 μs)

    Figure  11.  System time response tested result for ICT @τ=100 μs

    表  1  ICT参数

    Table  1.   ICT parameters

    measuring range/$ {\text{μ}}\mathrm{A} $frequency range/MHzoutput up time/$ \mathrm{n}\mathrm{s} $noise/$ {\text{μ}}\mathrm{A} $nonlinearity/%
    0.5~300010~350$ < 70 $$ 0.1 $2
    下载: 导出CSV

    表  2  不同时间常数下ICT和FC在束测量分析结果

    Table  2.   Analysis results of ICT and FC data at different time constants

    time constant/μsICT stability/μAFC stability/μA
    30000 0.0083 0.0078 0.0086 0.0052 0.0046 0.0750 0.0880 0.0802 0.0824 0.0844
    3000 0.0705 0.0704 0.0487 0.0530 0.0656 0.0811 0.0857 0.0908 0.0978 0.0880
    100 0.1009 0.1044 0.0995 0.1035 0.1045 0.0847 0.0887 0.0841 0.0834 0.0845
    下载: 导出CSV

    表  3  ICT和FC在束测量数据分析结果(不同流强、相同时间常数)

    Table  3.   Analysis results of ICT and FC data @ 30 ms time constant

    6485 current/μAFC stability/μAICT stability/μA
    6.06240.07010.0095
    5.53490.08480.0065
    4.9150.07560.0045
    4.61280.07450.0076
    3.50440.07270.0059
    4.26390.07240.0086
    7.03460.06810.0178
    6.72640.0720.0108
    6.45430.07150.0149
    5.76140.07730.0082
    下载: 导出CSV
  • [1] Yang J C, Shi J, Chai W P, et al. Design of a compact structure cancer therapy synchrotron[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2014, 756: 19-22.
    [2] Xu Zhiguo, Mao Ruishi, Duan Limin, et al. A new multi-strip ionization chamber used as online beam monitor for heavy ion therapy[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729: 895-899. doi: 10.1016/j.nima.2013.08.069
    [3] 李敏. HIMM束流诊断前端控制系统的设计与实现[D]. 兰州: 中国科学院大学(中国科学院近代物理研究所), 2015

    Li Min. The design and implementation of front-end control system of beam diagnostics for HIMM[D]. Lanzhou: Institute of Modern Physics, Chinese Academy of Sciences, 2015
    [4] Forck P. Lecture notes on beam instrumentation and diagnostics[R]. Joint University Accelerator School, 2017.
    [5] Belohrad D. Beam charge measurements[C]//Proceedings of DIPAC2011. Hamburg: DIPAC, 2011: 564-568.
    [6] Bergoz. Integrating current transformer user’s manual[EB/OL]. http://www.bergoz.com/wp-content/uploads/ICT-manual-4-2.pdf.
    [7] Unser K B. Design and preliminary tests of a beam intensity monitor for LEP[C]//Proceedings of the 1989 IEEE Particle Accelerator Conference, 'Accelerator Science and Technology. 1989: 71-73.
    [8] Krupa M, Soby L. Beam intensity measurements in the Large Hadron Collider[C]//Proceedings of the 20th International Conference Mixed Design of Integrated Circuits and Systems - MIXDES 2013. 2013: 592-597.
    [9] Nakamura K, Mittelberger D E, Gonsalves A J, et al. Pico-Coulomb charge measured at BELLA to percent-level precision using a Turbo-ICT[J]. Plasma Physics and Controlled Fusion, 2016, 58(3): 034010. doi: 10.1088/0741-3335/58/3/034010
    [10] Wu Yuchi, Han Dan, Zhu Bin, et al. A new method to calculate the beam charge for an integrating current transformer[J]. Review of Scientific Instruments, 2012, 83: 093302. doi: 10.1063/1.4750072
    [11] 程超才, 孙葆根, 卢平, 等. HLSII新的注入器束流强度测量系统[J]. 强激光与粒子数, 2015, 27:045106 doi: 10.3788/HPLPB20152704.45106

    Cheng Chaocai, Sun Baogen, Lu Ping, et al. New beam intensity measurement system for HLSII injector[J]. High Power Laser and Particle Beams, 2015, 27: 045106 doi: 10.3788/HPLPB20152704.45106
    [12] Koyama R, Sakamoto N, Fujimaki M, et al. Online monitoring of beam phase and intensity using lock-in amplifiers[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2013, 729: 788-799. doi: 10.1016/j.nima.2013.08.056
    [13] Schell L, Sadun A. Lock-in amplifier[R]. 6.101 Project Report.
    [14] Lock-in amplifier and applications[EB/OL]. https://www.lehigh.edu/~jph7/website/Physics262/LockInAmplifierAndApplications.pdf.
    [15] SRS. Lock-in amplifier: SR844 — 200 MHz lock-in amplifier[EB/OL]. https://thinksrs.com/products/SR844.htm.
    [16] USB-6210 specification[EB/OL]. https://www.download.ni.com/support/manuals/357194d.pdf.
    [17] Keithley. Model 6485 picoammeter instruction manual[M]. Cleveland: Keithley Instruments, Inc. , 2001.
  • 加载中
图(11) / 表(3)
计量
  • 文章访问数:  622
  • HTML全文浏览量:  200
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-09
  • 修回日期:  2022-08-23
  • 网络出版日期:  2022-08-30
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回