留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布反馈量子级联激光器光栅反馈特性

刘莹 蒋涛 杨奇 王雪敏 湛治强 邹蕊矫 罗佳文 樊龙 陈风伟 吴卫东

刘莹, 蒋涛, 杨奇, 等. 分布反馈量子级联激光器光栅反馈特性[J]. 强激光与粒子束, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131
引用本文: 刘莹, 蒋涛, 杨奇, 等. 分布反馈量子级联激光器光栅反馈特性[J]. 强激光与粒子束, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131
Liu Ying, Jiang Tao, Yang Qi, et al. Study on grating feedback characteristics of distributed feedback quantum cascade laser[J]. High Power Laser and Particle Beams, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131
Citation: Liu Ying, Jiang Tao, Yang Qi, et al. Study on grating feedback characteristics of distributed feedback quantum cascade laser[J]. High Power Laser and Particle Beams, 2022, 34: 111005. doi: 10.11884/HPLPB202234.220131

分布反馈量子级联激光器光栅反馈特性

doi: 10.11884/HPLPB202234.220131
基金项目: 重点实验室基金项目(KLLD2020076)
详细信息
    作者简介:

    刘 莹,1016819837@qq.com

    通讯作者:

    王雪敏,wangxuemin75@sohu.com

  • 中图分类号: TN242

Study on grating feedback characteristics of distributed feedback quantum cascade laser

  • 摘要: 为探究Bragg光栅结构对TM模反馈特性的影响,利用有限时域差分法对具有TM模的分布反馈(DFB)量子级联激光器Bragg光栅结构进行仿真研究。重点分析了侧向耦合光栅的光学特性以及光栅侧壁倾角对光栅反射谱、损耗的影响及原因,并探究了光栅刻蚀深度及占空比与TM模的耦合系数、损耗的关系。结果表明有效折射率是影响Bragg波长的主要因素,而光限制因子是不同周期的侧向耦合光栅结构耦合系数产生巨大差别的原因,当光栅侧壁倾角90°时镜面损耗最小。光栅周期、占空比、刻蚀深度与耦合系数的关系表明:这些参数不仅影响光栅的相对介电常数,也会对光限制因子产生作用,从而影响耦合系数的大小;耦合系数与刻蚀深度具有正比关系,大周期光栅耦合系数随占空比的变化率较小。对光栅光反馈特性的理论研究有利于提升对DFB量子级联激光器的认识,促进激光器性能的提升和发展。
  • 图  1  光栅示意图

    Figure  1.  Schematic diagram of grating

    图  2  光栅示意图

    Figure  2.  Diagram of grating structures

    图  3  光栅位置不同时的反射谱

    Figure  3.  Reflection spectra at different grating positions

    图  4  两种结构中的横模分布

    Figure  4.  Transverse mode distribution in two structures

    图  5  光栅侧壁倾角及其与波长、反射率的关系

    Figure  5.  Angle of side wall of grating and the relationship between dip angle, wavelength and reflectivity of grating

    图  6  光栅倾角对谐振腔损耗的影响

    Figure  6.  Influence of grating angle on cavity loss

    图  7  光栅耦合系数与占空比、刻蚀深度的关系

    Figure  7.  Grating coupling coefficient varies with duty ratio and etching depth

    图  8  光栅刻蚀深度与耦合系数的关系

    Figure  8.  Relationship between etching depth of grating and coupling coefficient

    图  9  光栅刻蚀深度、波长与反射率的关系

    Figure  9.  Relationship between etching depth, wavelength and reflectivity of the period

    图  10  光栅刻蚀深度对损耗的影响

    Figure  10.  Influence of etching depth of grating on loss

    表  1  外延结构

    Table  1.   Epitaxial layer structure

    layer structurethickness/µm
    highly doped InP1.00
    InP4.00
    InGaAs0.30
    active region2.67
    InGaAs0.30
    InP4.00
    InP substrate
    下载: 导出CSV
  • [1] Shu Hong, Suttinger M, Lyakh A, et al. Floquet-Bloch analysis for distributed feedback quantum cascade lasers with a non-rectangular top-metal grating profile[J]. IEEE Journal of Quantum Electronics, 2019, 55(1): 1-7.
    [2] Sigler C, Wang Xiaodong, Mawst L J, et al. First-order grating TM coupling coefficients for distributed feedback quantum cascade lasers[J]. IEEE Journal of Quantum Electronics, 2018, 54: 2300207.
    [3] Babichev A V, Gladyshev A G, Filimonov A V, et al. Heterostructures for quantum-cascade lasers of the wavelength range of 7-8 μm[J]. Technical Physics Letters, 2017, 43(7): 666-669. doi: 10.1134/S1063785017070173
    [4] Dang Jingmin, Yu Haiye, Sun Yujing, et al. A CO trace gas detection system based on continuous wave DFB-QCL[J]. Infrared Physics & Technology, 2017, 82: 183-191.
    [5] Abramov P I, Budarin A S, Kuznetsov E V, et al. Quantum-cascade lasers in atmospheric optical communication lines: challenges and prospects (review)[J]. Journal of Applied Spectroscopy, 2020, 87(4): 579-600. doi: 10.1007/s10812-020-01041-y
    [6] Babichev A V, Gladyshev A G, Kurochkin A S, et al. Room temperature lasing of multi-stage quantum-cascade lasers at 8 μm wavelength[J]. Semiconductors, 2018, 52(8): 1082-1085. doi: 10.1134/S1063782618080031
    [7] Baranov A N, Bahriz M, Teissier R. Room temperature continuous wave operation of InAs-based quantum cascade lasers at 15 μm[J]. Optics Express, 2016, 24(16): 18799-18806. doi: 10.1364/OE.24.018799
    [8] Cui Xiaojuan, Yu Runqing, Chen Weidong, et al. Development of a quantum cascade laser-based sensor for environmental HONO monitoring in the mid-infrared at 8 μm[J]. Journal of Lightwave Technology, 2019, 37(11): 2784-2791. doi: 10.1109/JLT.2018.2876672
    [9] Tittel F K, Allred J J, Cao Yingchun , et al. Quantum cascade laser-based sensor system for nitric oxide detection[C]//Proceedings of SPIE 9370, Quantum Sensing and Nanophotonic Devices XII. 2015: 9370.
    [10] Wei Qianhe, Li Bincheng, Wang Jing, et al. Impact of residual water vapor on the simultaneous measurements of trace CH4 and N2O in air with cavity ring-down spectroscopy[J]. Atmosphere, 2021, 12: 221. doi: 10.3390/atmos12020221
    [11] Deng Yu, Zhao Binbin, Wang Xingguang, et al. Narrow linewidth characteristics of interband cascade lasers[J]. Applied Physics Letters, 2020, 116: 201101. doi: 10.1063/5.0006823
    [12] Golyak I S, Morozov A N, Svetlichnyi S I, et al. Identification of chemical compounds by the reflected spectra in the range of 5.3-12.8 μm using a tunable quantum cascade laser[J]. Russian Journal of Physical Chemistry B, 2019, 13(4): 557-564. doi: 10.1134/S1990793119040055
    [13] Pierściński K, Kuźmicz A, Pierścińska D, et al. Optimization of cavity designs of tapered AlInAs/InGaAs/InP quantum cascade lasers emitting at 4.5 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25: 1901009.
    [14] Zhao Yue, Zhang Jinchuan, Jia Zhiwei, et al. Low power consumption distributed-feedback quantum cascade lasers operating in continuous-wave mode above 90 ℃ at λ ~ 7.2 μm[J]. Chinese Physics Letters, 2016, 33: 124201. doi: 10.1088/0256-307X/33/12/124201
    [15] Briggs R M, Frez C, Fradet M, et al. Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth[J]. Optics Express, 2016, 24(13): 14589-14595. doi: 10.1364/OE.24.014589
    [16] Zhou Wenjia, Wu Donghai, McClintock R, et al. High performance monolithic, broadly tunable mid-infrared quantum cascade lasers[J]. Optica, 2017, 4(10): 1228-1231. doi: 10.1364/OPTICA.4.001228
    [17] Zhuo Ning, Zhang Jinchuan, Liu Fengqi, et al. Tunable distributed feedback quantum cascade lasers by a sampled Bragg grating[J]. IEEE Photonics Technology Letters, 2013, 25(11): 1039-1042. doi: 10.1109/LPT.2013.2257716
    [18] Cheng F M, Zhang J C, Zhao Y, et al. Study on the wavelength detuning distributed feedback quantum cascade lasers[J]. Journal of Nanoscience and Nanotechnology, 2018, 18(11): 7523-7526. doi: 10.1166/jnn.2018.16044
    [19] Faist J, Gmachl C, Capasso F, et al. Distributed feedback quantum cascade lasers[J]. Applied Physics Letters, 1997, 70(20): 2670-2672. doi: 10.1063/1.119208
    [20] Chen C L. Foundations for guided-wave optics[M]. Hoboken: John Wiley & Sons, 2006.
    [21] Streifer W, Scifres D, Burnham R. TM-mode coupling coefficients in guided-wave distributed feedback lasers[J]. IEEE Journal of Quantum Electronics, 1976, 12(2): 74-78. doi: 10.1109/JQE.1976.1069108
    [22] Virtanen H, Uusitalo T, Dumitrescu M. Simulation studies of DFB laser longitudinal structures for narrow linewidth emission[J]. Optical and Quantum Electronics, 2017, 49: 160. doi: 10.1007/s11082-017-0993-8
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  533
  • HTML全文浏览量:  225
  • PDF下载量:  67
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-28
  • 修回日期:  2022-06-27
  • 录用日期:  2022-08-26
  • 网络出版日期:  2022-09-16
  • 刊出日期:  2022-09-20

目录

    /

    返回文章
    返回