留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强流目标的DC-SRF-II光阴极驱动激光系统设计

吴桐 徐航 徐金强 李京祎 黄森林

吴桐, 徐航, 徐金强, 等. 强流目标的DC-SRF-II光阴极驱动激光系统设计[J]. 强激光与粒子束, 2022, 34: 104018. doi: 10.11884/HPLPB202234.220244
引用本文: 吴桐, 徐航, 徐金强, 等. 强流目标的DC-SRF-II光阴极驱动激光系统设计[J]. 强激光与粒子束, 2022, 34: 104018. doi: 10.11884/HPLPB202234.220244
Wu Tong, Xu Hang, Xu Jinqiang, et al. Design of the photocathode drive laser system for high current electron beam operation of DC-SRF-II gun[J]. High Power Laser and Particle Beams, 2022, 34: 104018. doi: 10.11884/HPLPB202234.220244
Citation: Wu Tong, Xu Hang, Xu Jinqiang, et al. Design of the photocathode drive laser system for high current electron beam operation of DC-SRF-II gun[J]. High Power Laser and Particle Beams, 2022, 34: 104018. doi: 10.11884/HPLPB202234.220244

强流目标的DC-SRF-II光阴极驱动激光系统设计

doi: 10.11884/HPLPB202234.220244
基金项目: 北京大学核物理与核技术国家重点实验室自主科研课题(NPT2022ZZ01);北京大学核物理与核技术国家重点实验室开放课题(NPT2020KFY15)
详细信息
    作者简介:

    吴 桐,wu_tong@pku.edu.cn

    通讯作者:

    徐 航,xuhang@ihep.ac.cn

    黄森林,huangsl@pku.edu.cn

  • 中图分类号: TN248

Design of the photocathode drive laser system for high current electron beam operation of DC-SRF-II gun

  • 摘要: 为推动北京大学超导加速器实验装置不断向强流目标迈进,提出100 W红外高重频光阴极驱动激光的设计方案,主放大器采用先进的光子晶体增益光纤,保证输出光束的质量。对激光系统中的关键问题,如各部分功率指标、脉冲展宽和压缩、激光耦合等进行了设计,并且考虑了激光的非线性影响。为实现强流加速器开机运行所必备的诊断模式,也提出了对于高重频激光进行两级选频的独特设计方案。将高速的SOA光开关和低速的声光调制器相结合,产生宏脉冲结构的输出激光,从而实现加速器在诊断模式下的运行。
  • 图  1  北京大学DC-SRF-II双碱光阴极驱动激光系统

    Figure  1.  Peking University DC-SRF-II photocathode drive laser system

    ① seed source and pulse stretcher, ②~⑤ amplification system, ⑥ pulse compressor and frequency doubling system, ⑦ longitudinal shaping and transverse shaping system, ⑧ pulse picking system

    图  2  北京大学DC-SRF-II驱动激光系统宏脉冲诊断模式

    Figure  2.  Macro pulse mode of Peking University DC-SRF-II photocathode drive laser system

    图  3  北京大学DC-SRF-II驱动激光系统主放大器

    Figure  3.  The main amplification unit of Peking University DC-SRF-II photocathode drive laser system

    图  4  泵浦光耦合光路

    Figure  4.  Pump laser coupling optical path

    图  5  PCF与ROD-PCF的红外信号光耦合

    Figure  5.  The signal laser is coupled from PCF into ROD-PCF by four focal lenses

    图  6  北京大学DC-SRF-II驱动激光系统种子源与脉冲展宽器

    Figure  6.  Seed pulse and pulse stretcher of Peking University DC-SRF-II photocathode drive laser system

    图  7  随着可调谐滤波器的入射角度增大,输出 激光的光谱中心波长“蓝移”

    Figure  7.  Hypsochromic shift with the increasing angle of incidence (AOI) of tunable filter

    表  1  功率放大系统输出参数表

    Table  1.   Parameters of DC-SRF-II laser amplifier

    amplifier unitoutput power/mW
    pre-amplifier I (Yb-doped fiber)10
    pre-amplifier II (Yb-doped fiber)200
    main-amplifier I (PCF)50 00
    main-amplifier II (ROD - PCF)100 000
    下载: 导出CSV

    表  2  激光耦合透镜的焦距参数表

    Table  2.   Focal length of coupling lenses

    $ {f}_{1} $/mm$ {f}_{2} $/mm$ {f}_{3} $/mm$ {f}_{4} $/mm$ {f}_{5} $/mm$ {f}_{6} $/mm$ {f}_{7} $/mm
    25202520502525
    下载: 导出CSV

    表  3  不同入射角度所对应的输出激光光谱

    Table  3.   Spectral region and width of different AOI

    angle of incidence/(°)spectral region/nmspectral width/nm
    $ 0 $1028~10324.0
    $ 2.5 $1028~1031.53.5
    $ 3.5 $1028~10313.0
    $ 4.5 $1028~1030.52.5
    $ 5.5 $1028~10302.0
    $ 6.0 $1028~1029.51.5
    $ 6.5 $1028~10291.0
    $ 7.0 $1028~1028.50.5
    下载: 导出CSV
  • [1] Galayda J N. The LCLS-II: a high power upgrade to the LCLS[C]//Proceedings of the 9th International Particle Accelerator Conference. Vancouver: JACoW Publishing, 2018.
    [2] Zhu Z Y, Zhao Z T, Wang D, et al. SCLF: an 8-GeV CW SCRF linac-based X-ray FEL facility in Shanghai[C]//Proceedings of the 38th International Free Electron Laser Conference. Santa Fe, NM, USA: JACoW Publishing, 2017: 20-25.
    [3] 黄森林, 刘克新. 基于能量回收技术的光源—ERL光源[J]. 强激光与粒子束, 2022, 34:104011 doi: 10.11884/HPLPB202234.220076

    Huang Senlin, Liu Kexin. Energy recovery linac light source[J]. High Power Laser and Particle Beams, 2022, 34: 104011 doi: 10.11884/HPLPB202234.220076
    [4] Stephan F, Krasilnikov M. High brightness photo injectors for brilliant light sources[M]//Jaeschke E J, Khan S, Schneider J R, et al. Synchrotron Light Sources and Free-Electron Lasers: Accelerator Physics, Instrumentation and Science Applications. Cham: Springer, 2020: 603-646
    [5] Nakamura N. Review of ERL projects at KEK and around the world[C]//International Particle Accelerator Conference 2012. 2012: 1040
    [6] Honda Y. Development of a photo-injector laser system for KEK ERL test accelerator[C]//International Particle Accelerator Conference 2012. 2012: 1530-1532.
    [7] Ouzounov D, Li Heng, Dunham B, et al. Fiber-based drive laser systems for the Cornell ERL electron photoinjector[C]//Proceedings of SPIE 7581, High Energy/Average Power Lasers and Intense Beam Applications IV. SPIE, 2010: 75810N
    [8] Zhao Zhi, Dunham B M, Bazarov I, et al. Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier[J]. Optics Express, 2012, 20(5): 4850-4855. doi: 10.1364/OE.20.004850
    [9] Zhao Zhi, Dunham B M, Wise F W. Generation of 167 W infrared and 124 W green power from a 1.3-GHz, 1-ps rod fiber amplifier[J]. Optics Express, 2014, 22(21): 25065-25070. doi: 10.1364/OE.22.025065
    [10] 许党朋, 林宏奂, 邓颖, 等. 高重复频率短脉冲全光纤激光系统[J]. 强激光与粒子束, 2014, 26:091002 doi: 10.11884/HPLPB201426.091002

    Xu Dangpeng, Lin Honghuan, Deng Ying, et al. High repetition frequency all fiber short pulse laser system[J]. High Power Laser and Particle Beams, 2014, 26: 091002 doi: 10.11884/HPLPB201426.091002
    [11] 李孝燊, 徐金强, 孙大睿. 高能所光阴极驱动激光系统研制[J]. 强激光与粒子束, 2018, 30:021001 doi: 10.11884/HPLPB201830.170344

    Li Xiaoshen, Xu Jinqiang, Sun Darui. Drive laser system for a photocathode at IHEP[J]. High Power Laser and Particle Beams, 2018, 30: 021001 doi: 10.11884/HPLPB201830.170344
    [12] Xu Hang, Xu Jinqiang, Li Xiaoping, et al. High power drive laser system for photocathode at IHEP[J]. Optics Express, 2021, 29(18): 29550-29556. doi: 10.1364/OE.438199
    [13] Liu K, Chen J, Feng L, et al. Commissioning and operation of DC-SRF injector[C]//Proceedings of SRF2013. Paris, France, 2013.
    [14] Quan Shengwen, Hao Jiankui, Lin Lin, et al. Stable operation of the DC-SRF photoinjector[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 798: 117-120.
    [15] 冯立文, 王天一, 贾豪彦, 等. 北京大学DC-SRF-II注入器光阴极驱动激光系统[J]. 强激光与粒子束, 2022, 34:104016 doi: 10.11884/HPLPB202234.210343

    Feng Liwen, Wang Tianyi, Jia Haoyan, et al. Peking University’s DC-SRF-II photoinjector drive laser system[J]. High Power Laser and Particle Beams, 2022, 34: 104016 doi: 10.11884/HPLPB202234.210343
    [16] Haboucha A, Zhang W, Li T, et al. Optical-fiber pulse rate multiplier for ultralow phase-noise signal generation[J]. Optics Letters, 2011, 36(18): 3654-365. doi: 10.1364/OL.36.003654
    [17] Will I, Klemz G. Generation of flat-top picosecond pulses by coherent pulse stacking in a multicrystal birefringent filter[J]. Optics Express, 2008, 16(19): 14922-14937. doi: 10.1364/OE.16.014922
    [18] Liu Fangming, Huang Senlin, Si Shangyu, et al. Generation of picosecond pulses with variable temporal profiles and linear polarization by coherent pulse stacking in a birefringent crystal shaper[J]. Optics Express, 2019, 27(2): 1467-1478. doi: 10.1364/OE.27.001467
  • 加载中
图(7) / 表(3)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  159
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-09
  • 修回日期:  2022-09-01
  • 网络出版日期:  2022-09-02
  • 刊出日期:  2022-08-22

目录

    /

    返回文章
    返回