留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种带有升压结构的LC充电电源的设计

杨少杰 王邦继 李伟 刘庆想

杨少杰, 王邦继, 李伟, 等. 一种带有升压结构的LC充电电源的设计[J]. 强激光与粒子束, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002
引用本文: 杨少杰, 王邦继, 李伟, 等. 一种带有升压结构的LC充电电源的设计[J]. 强激光与粒子束, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002
Yang Shaojie, Wang Bangji, Li Wei, et al. Design of an LC charging power supply with a boost structure[J]. High Power Laser and Particle Beams, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002
Citation: Yang Shaojie, Wang Bangji, Li Wei, et al. Design of an LC charging power supply with a boost structure[J]. High Power Laser and Particle Beams, 2023, 35: 085003. doi: 10.11884/HPLPB202335.230002

一种带有升压结构的LC充电电源的设计

doi: 10.11884/HPLPB202335.230002
详细信息
    作者简介:

    杨少杰,warwithwind@163.com

    通讯作者:

    李 伟,liwei_chengdu@163.com

  • 中图分类号: TN86

Design of an LC charging power supply with a boost structure

  • 摘要: 为使LC谐振充电方案具有更高的升压范围和提高其对供电电压的适应性,采用了一种带有升压结构的电路拓扑,使得LC谐振充电方案具有升压和降压工作能力,同时采用了基于能量实时检测的控制算法,使得该方案能够根据预设参数准确充电和放电,增强了对供电电压波动的适应能力。初步的实验结果表明,在供电电压波动的情况下,该电源能够完成升降压的调节,且最大电压偏差小于5 V。
  • 图  1  现有LC谐振电源原理图

    Figure  1.  Schematic diagram of existing LC resonant power supply

    图  2  电源工作原理

    Figure  2.  Principle of power supply

    图  3  升压工作模式下第一阶段和第二阶段的充电状态图

    Figure  3.  Charging state diagram of the first stage and the second stage under boost operation mode

    图  4  两种工作模式下电源的工作波形仿真

    Figure  4.  Simulation of power supply waveform under two operating modes

    图  5  系统中能量与开关的关系

    Figure  5.  Relationship between energy and switch in the system

    图  6  单周期内母线电压变化时工作波形

    Figure  6.  Waveforms of supply voltage fluctuation in a single cycle

    图  7  两种工作模式下电源1000 Hz重频仿真波形

    Figure  7.  1000 Hz repetition frequency simulation waveforms of power supply under two operating modes

    图  8  电源工作波形

    Figure  8.  Waveforms of the power supply

    图  9  供电电压不稳定时电源的工作波形

    Figure  9.  Waveforms of power supply under unstable supply voltage

    图  10  两种工作模式下电源1000 Hz重频波形

    Figure  10.  1000 Hz repetition frequency waveforms of power supply under two operating modes

  • [1] 丛培天. 中国脉冲功率科技进展简述[J]. 强激光与粒子束, 2020, 32:025002 doi: 10.11884/HPLPB202032.200040

    Cong Peitian. Review of Chinese pulsed power science and technology[J]. High Power Laser and Particle Beams, 2020, 32: 025002 doi: 10.11884/HPLPB202032.200040
    [2] 钱宝良. 国外高功率微波技术的研究现状与发展趋势[J]. 真空电子技术, 2015(2):1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005

    Qian Baoliang. The research status and developing tendency of high power microwave technology in foreign countries[J]. Vacuum Electronics, 2015(2): 1-7 doi: 10.3969/j.issn.1002-8935.2015.02.005
    [3] Korovin S D, Rostov V V, Polevin S D, et al. Pulsed power-driven high-power microwave sources[J]. Proceedings of the IEEE, 2004, 92(7): 1082-1095. doi: 10.1109/JPROC.2004.829020
    [4] 李名加, 康强, 常安碧, 等. 紧凑型重复频率高压脉冲变压器研制[J]. 高电压技术, 2009, 35(2):340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037

    Li Mingjia, Kang Qiang, Chang Anbi, et al. Development of a compact repetitive high-voltage pulse transformer[J]. High Voltage Engineering, 2009, 35(2): 340-343 doi: 10.13336/j.1003-6520.hve.2009.02.037
    [5] 甘延青, 宋法伦, 李飞, 等. 高功率重复频率脉冲充电电源设计与实验研究[J]. 强激光与粒子束, 2018, 30:065003 doi: 10.11884/HPLPB201830.170335

    Gan Yanqing, Song Falun, Li Fei, et al. Design and experimental research of high power repetitive pulse charging power supply[J]. High Power Laser and Particle Beams, 2018, 30: 065003 doi: 10.11884/HPLPB201830.170335
    [6] 冯传均, 何泱, 戴文峰, 等. 串联谐振高压电容充电电源设计及分析[J]. 强激光与粒子束, 2019, 31:055002 doi: 10.11884/HPLPB201931.180355

    Feng Chuanjun, He Yang, Dai Wenfeng, et al. Design and analysis of series resonant high voltage capacitor charging power supply[J]. High Power Laser and Particle Beams, 2019, 31: 055002 doi: 10.11884/HPLPB201931.180355
    [7] 张天洋. 高功率脉冲驱动源的初级储能充电系统及其关键技术研究[D]. 长沙: 国防科技大学, 2016

    Zhang Tianyang. Investigation of primary energy supply system in high power pulse generators and related technologies[D]. Changsha: National University of Defense Technology, 2016
    [8] 乔汉青, 樊亚军, 夏文锋, 等. 时基反馈控制的Tesla变压器初级电源[J]. 强激光与粒子束, 2018, 30:085005 doi: 10.11884/HPLPB201830.170526

    Qiao Hanqing, Fan Yajun, Xia Wenfeng, et al. Time-base feedback controlled primary source of Tesla transformer[J]. High Power Laser and Particle Beams, 2018, 30: 085005 doi: 10.11884/HPLPB201830.170526
    [9] Jiang W, Matsuda T, Yatsui K, et al. High repetition-rate, low jitter pulsed power generator for excimer laser applications[C]//Proceedings of the 25th International Power Modulator Symposium, 2002 and 2002 High-Voltage Workshop. 2002: 605-607.
    [10] 李伟. 脉冲功率系统中能量回收电路的改进[J]. 强激光与粒子束, 2019, 31:055001 doi: 10.11884/HPLPB201931.180359

    Li Wei. Improvement of energy recovery circuit in pulsed power system[J]. High Power Laser and Particle Beams, 2019, 31: 055001 doi: 10.11884/HPLPB201931.180359
    [11] 李亚维, 邓建军, 谢敏, 等. 800 kV/100 Hz高功率微波驱动电源控制系统[J]. 高电压技术, 2009, 35(6):1426-1429

    Li Yawei, Deng Jianjun, Xie Min, et al. Control system of 800 kV/100 Hz high power microwave power supply[J]. High Voltage Engineering, 2009, 35(6): 1426-1429
    [12] Wu Lin, Wang Jun, Liu Zhigang, et al. Analysis and design of LC series converter considering effect of parasitic components[C]//Proceedings of 2012 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring. 2012: 126-130.
  • 加载中
图(10)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  111
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-01-05
  • 修回日期:  2023-06-08
  • 录用日期:  2023-06-08
  • 网络出版日期:  2023-06-30
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回