留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光驱动的多层膜复合靶M带辐射光谱研究

谭伯仲 李英华 张林 李建明 阳庆国

谭伯仲, 李英华, 张林, 等. 激光驱动的多层膜复合靶M带辐射光谱研究[J]. 强激光与粒子束, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018
引用本文: 谭伯仲, 李英华, 张林, 等. 激光驱动的多层膜复合靶M带辐射光谱研究[J]. 强激光与粒子束, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018
Tan Bozhong, Li Yinghua, Zhang Lin, et al. Study on M-band radiation spectrum of laser driven multilayer composite target[J]. High Power Laser and Particle Beams, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018
Citation: Tan Bozhong, Li Yinghua, Zhang Lin, et al. Study on M-band radiation spectrum of laser driven multilayer composite target[J]. High Power Laser and Particle Beams, 2023, 35: 081004. doi: 10.11884/HPLPB202335.230018

激光驱动的多层膜复合靶M带辐射光谱研究

doi: 10.11884/HPLPB202335.230018
基金项目: 国家自然科学基金项目(12004354)
详细信息
    作者简介:

    谭伯仲,tan0814@163.com

    通讯作者:

    阳庆国,yungore@163.com

  • 中图分类号: 0436

Study on M-band radiation spectrum of laser driven multilayer composite target

  • 摘要: 时间分辨X射线吸收精细结构谱技术需要产生高亮度、均匀、宽光谱的X射线源。单一靶材产生的M带辐射源亮度高,但均匀性较差,因此提出了一种使用多种金属材料制备的多层膜复合靶产生M带辐射的方案。针对Si的K边X射线吸收谱实验,根据前期单一靶材M带光谱实验数据理论计算了最优的材料比例,制备了Au、Yb、Dy三种材料组成的多层膜复合靶,并在神光II激光装置上开展了脉冲激光驱动的多层膜复合靶辐射光谱测量,实验结果和理论计算基本一致。相比单一靶材,多层膜复合靶产生的M带辐射源具有光谱宽、整体亮度均匀的优点,在时间分辨X射线吸收精细结构谱中具有较大的应用潜力。
  • 图  1  纳秒强激光辐照单一金属靶材产生的等离子体光谱

    Figure  1.  Plasma spectra generated by nanosecond high power laser irradiating on elementary metal target[16]

    图  2  多层膜复合靶结构示意图

    Figure  2.  Schematic diagram of multilayer composite target structure

    图  3  激光等离子体光谱测量实验布局示意图

    Figure  3.  Experimental layout of laser plasma spectrum measurement

    图  4  多层膜复合靶等离子体光谱理论计算及实验测量结果

    Figure  4.  Theoretical calculation and experimental measurement results of plasma spectrum of multilayer composite target

  • [1] Bressler C, Chergui M. Ultrafast X-ray absorption spectroscopy[J]. Chemical Reviews, 2004, 104(4): 1781-812. doi: 10.1021/cr0206667
    [2] Pertot Y, Schmidt C, Matthews M, et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source[J]. Science, 2017, 355(6322): 264. doi: 10.1126/science.aah6114
    [3] Forget P, Dorchies F, Kieffer J C, et al. Ultrafast broadband laser plasma X-ray source for femtosecond time-resolved EXAFS[J]. Chemical Physics, 2004, 299(2-3): 259-263. doi: 10.1016/j.chemphys.2003.10.037
    [4] Durr H A, Stamm C, Kachel T, et al. Ultrafast electron and spin dynamics in nickel probed with femtosecond X-ray pulses[J]. IEEE Transactions on Magnetics, 2008, 44(7): 1957-1961. doi: 10.1109/TMAG.2008.924544
    [5] Pascarelli S, Mathon O, Mairs T, et al. The time-resolved and extreme-conditions XAS (TEXAS) facility at the european synchrotron radiation facility: the energy-dispersive x-ray absorption spectroscopy beamline ID24[J]. Journal of Synchrotron Radiation, 2016, 23(1): 353-368. doi: 10.1107/S160057751501783X
    [6] Pépin C. M, Torchio R, Occelli F, et al. White-line evolution in shocked solid Ta evidenced by synchrotron X-ray absorption spectroscopy[J]. Physical Review B, 2020, 102(14): 144102. doi: 10.1103/PhysRevB.102.144102
    [7] Torchio R, Occelli F, Mathon O, et al. Probing local and electronic structure in warm dense matter: single pulse synchrotron X-ray absorption spectroscopy on shocked Fe[J]. Scientific Reports, 2016, 6: 26402. doi: 10.1038/srep26402
    [8] Yaakobi B, Meyerhofer D D, Boehly T R, et al. Extended X-ray absorption fine structure measurements of laser shocks in Ti and V and phase transformation in Ti[J]. Physics of Plasmas, 2004, 11(5): 2688-2695. doi: 10.1063/1.1646673
    [9] Yaakobi B, Boehly T R, Meyerhofer D D, et al. Extended X-ray absorption fine structure measurement of phase transformation in iron shocked by nanosecond laser[J]. Physics of Plasmas, 2005, 12(9): 1052.
    [10] Coppari F, Thorn D. B, Kemp G. E, et al. X-ray source development for EXAFS measurements on the National Ignition Facility.[J]. Review of Scientific Instruments, 2017, 88(8): 083907. doi: 10.1063/1.4999649
    [11] Bolis R, Hernandez J-A, Recoules V, et al. X-ray absorption near edge spectroscopy study of warm dense MgO[J]. 2019, 26(11): 112703.
    [12] Benuzzi-Mounaix A, Dorchies F, Recoules V, et al. Electronic structure investigation of highly compressed aluminum with K edge absorption spectroscopy[J]. Physical Review Letters, 2011, 107(16): 165006. doi: 10.1103/PhysRevLett.107.165006
    [13] Dorchies F, Lévy A, Goyon C, et al. Unraveling the solid-liquid-vapor phase transition dynamics at the atomic level with ultrafast X-ray absorption near-edge spectroscopy[J]. Physical Review Letters, 2011, 107(24): 245006. doi: 10.1103/PhysRevLett.107.245006
    [14] Dorchies F, Fedorov N, Lecherbourg L. Experimental station for laser-based picosecond time-resolved X-ray absorption near-edge spectroscopy.[J]. Review of Scientific Instruments, 2015, 86(7): 073106. doi: 10.1063/1.4926348
    [15] Zhao Y, Yang J, Zhang J, et al. K-shell photoabsorption edge of strongly coupled matter driven by laser-converted radiation.[J]. Physical Review Letters, 2013, 111(15): 155003. doi: 10.1103/PhysRevLett.111.155003
    [16] 谭伯仲, 阳庆国, 刘冬兵, 等. 基于M壳层辐射的Si K边X射线吸收近边结构谱实验研究.[J]. 光学学报, 2018, 38(3):0330001 doi: 10.3788/AOS201838.0330001

    Tan B Z, Yang Q G, Liu D B, et al. Experimental study on Si K-edge X-ray absorption near-edge structure with M-shell radiation[J]. Acta Optica Sinica, 2018, 38(3): 0330001 doi: 10.3788/AOS201838.0330001
  • 加载中
图(4)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  118
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-03
  • 修回日期:  2023-05-11
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-06-13
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回