留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光参量过程直接产生高重频超短脉冲序列

王文昊 周冰洁 章艳芳 王静 马金贵 张浩 钱列加

王文昊, 周冰洁, 章艳芳, 等. 基于光参量过程直接产生高重频超短脉冲序列[J]. 强激光与粒子束, 2023, 35: 091005. doi: 10.11884/HPLPB202335.230069
引用本文: 王文昊, 周冰洁, 章艳芳, 等. 基于光参量过程直接产生高重频超短脉冲序列[J]. 强激光与粒子束, 2023, 35: 091005. doi: 10.11884/HPLPB202335.230069
Wang Wenhao, Zhou Bingjie, Zhang Yanfang, et al. Direct generation of ultrashort pulse sequence by optical parametric process[J]. High Power Laser and Particle Beams, 2023, 35: 091005. doi: 10.11884/HPLPB202335.230069
Citation: Wang Wenhao, Zhou Bingjie, Zhang Yanfang, et al. Direct generation of ultrashort pulse sequence by optical parametric process[J]. High Power Laser and Particle Beams, 2023, 35: 091005. doi: 10.11884/HPLPB202335.230069

基于光参量过程直接产生高重频超短脉冲序列

doi: 10.11884/HPLPB202335.230069
基金项目: 国家自然科学基金项目(62122049);上海市青年科技启明星计划项目(21QA1404600)
详细信息
    作者简介:

    王文昊,wenhao_0218@sjtu.edu.cn

    通讯作者:

    王 静, wangj1118@sjtu.edu.cn

  • 中图分类号: O437

Direct generation of ultrashort pulse sequence by optical parametric process

  • 摘要: 论证了单晶体光参量放大(OPA)过程在特定边界条件下满足频域宇称-时间(PT)反对称性。归一化的数值求解结果显示,OPA系统PT对称阈值点附近呈现增益跃变性质。对于存在位相失配的OPA,通过实时调控泵浦光强,即可控制系统PT对称性,论文基于相位失配OPA中可超快调控PT对称性的特性构建了超快光开关,一方面光开关与周期性幅度调制的泵浦光联合使用,可直接将连续激光转换为超短脉冲序列输出;另一方面,构建的光开关也可用于脉冲激光再压缩,有望用于中红外波等长波段超短种子源。论文提出的基于超快光开关直接产生超短脉冲序列的方案,由于不需要光学谐振腔,易于实现大于10 GHz的超高重复频率。
  • 图  1  本征值和本征模式传输特性在不同∆kГ下的演化

    Figure  1.  The engenvalues and transmission characteristics of engenmodes versus ∆k and Г

    图  2  ∆k = 2时,信号光(蓝色)和闲频光(红色)的强度随zГ的演化

    Figure  2.  Intensity of signal (blue) and idler (red) versus z and Г for ∆k = 2

    图  3  正弦调制泵浦光驱动下,经过z=10的归一化长度传播后信号光的输出结果

    Figure  3.  Output signal driven by sinusoidal modulated pump for z=10

    图  4  信号时域波形、脉宽、对比度随归一化长度z的演化

    Figure  4.  Temporal waveforms, pulse duration, and output contrast of signal versus z

    图  5  直接产生脉冲序列的计算结果−5

    Figure  5.  Numerical simulation results for directly generated pulse sequence

    图  6  脉冲压缩的计算结果

    Figure  6.  Numerical simulation results for pulse compression

  • [1] Udem T, Holzwarth R, Hänsch T W. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237. doi: 10.1038/416233a
    [2] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Appl Phys Lett, 1973, 23(3): 142-144. doi: 10.1063/1.1654836
    [3] Peyman G A. Method for modifying corneal curvature: 4840175[P]. 1989-06-20.
    [4] McCracken R A, Charsley J M, Reid D T. A decade of astrocombs: recent advances in frequency combs for astronomy [Invited][J]. Opt Express, 2017, 25(13): 15058-15078. doi: 10.1364/OE.25.015058
    [5] IMT Vision—Framework and overall objectives of the future development of IMT for 2020 and beyond[R]. ITU-R M. 2083-0, 2015.
    [6] Bender C M, Boettcher S. Real spectra in non-Hermitian Hamiltonians having PT symmetry[J]. Phys Rev Lett, 1998, 80(24): 5243-5246. doi: 10.1103/PhysRevLett.80.5243
    [7] Guo A, Salamo G J, Duchesne D, et al. Observation of PT-symmetry breaking in complex optical potentials[J]. Phys Rev Lett, 2009, 103: 093902. doi: 10.1103/PhysRevLett.103.093902
    [8] Rüter C E, Makris K G, El-Ganainy R, et al. Observation of parity–time symmetry in optics[J]. Nat Phys, 2010, 6(3): 192-195. doi: 10.1038/nphys1515
    [9] Wiersig J. Enhancing the sensitivity of frequency and energy splitting detection by using exceptional points: application to microcavity sensors for single-particle detection[J]. Phys Rev Lett, 2014, 112: 203901. doi: 10.1103/PhysRevLett.112.203901
    [10] Lai Y H, Lu Y K, Suh M G, et al. Observation of the exceptional-point-enhanced Sagnac effect[J]. Nature, 2019, 576(7785): 65-69. doi: 10.1038/s41586-019-1777-z
    [11] Ramezani H, Kottos T, El-Ganainy R, et al. Unidirectional nonlinear PT-symmetric optical structures[J]. Phys Rev A, 2010, 82: 043803. doi: 10.1103/PhysRevA.82.043803
    [12] Antonosyan D A, Solntsev A S, Sukhorukov A A. Parity-time anti-symmetric parametric amplifier[J]. Opt Lett, 2015, 40(20): 4575-4578. doi: 10.1364/OL.40.004575
    [13] Ma Jingui, Wang Jing, Yuan Peng, et al. Quasi-parametric amplification of chirped pulses based on a Sm3+-doped yttrium calcium oxyborate crystal[J]. Optica, 2015, 2(11): 1006-1009. doi: 10.1364/OPTICA.2.001006
    [14] Zhong Q, Ahmed A, Dadap J I, et al. Parametric amplification in quasi-PT symmetric coupled waveguide structures[J]. New J Phys, 2016, 18: 125006. doi: 10.1088/1367-2630/18/12/125006
    [15] Flemens N, Moses J. Hermitian nonlinear wave mixing controlled by a PT-symmetric phase transition[J]. Phys Rev Lett, 2022, 129: 153901. doi: 10.1103/PhysRevLett.129.153901
    [16] Witte S, Eikema K S E. Ultrafast optical parametric chirped-pulse amplification[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2012, 18(1): 296-307. doi: 10.1109/JSTQE.2011.2118370
    [17] Özdemir Ş K, Rotter S, Nori F, et al. Parity–time symmetry and exceptional points in photonics[J]. Nat Mater, 2019, 18(8): 783-798. doi: 10.1038/s41563-019-0304-9
    [18] Mücke O D, Sidorov D, Dombi P, et al. Scalable Yb-MOPA-driven carrier-envelope phase-stable few-cycle parametric amplifier at 1.5 μm[J]. Opt Lett, 2009, 34(2): 118-120. doi: 10.1364/OL.34.000118
    [19] Ganeev R A, Kulagin I A, Ryasnyansky A I, et al. Characterization of nonlinear optical parameters of KDP, LiNbO3 and BBO crystals[J]. Opt Commun, 2004, 229(1/6): 403-412.
    [20] Gayer O, Sacks Z, Galun E, et al. Temperature and wavelength dependent refractive index equations for MgO-doped congruent and stoichiometric LiNbO3[J]. Appl Phys B, 2008, 91(2): 343-348. doi: 10.1007/s00340-008-2998-2
  • 加载中
图(6)
计量
  • 文章访问数:  367
  • HTML全文浏览量:  138
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-31
  • 修回日期:  2023-06-13
  • 录用日期:  2023-07-10
  • 网络出版日期:  2023-07-13
  • 刊出日期:  2023-09-15

目录

    /

    返回文章
    返回