留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法

余远平 李海艳 甘华权 郑铠涛 黄庆鑫 理玉龙 关赞洋 黄运保 景龙飞

余远平, 李海艳, 甘华权, 等. 基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100
引用本文: 余远平, 李海艳, 甘华权, 等. 基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法[J]. 强激光与粒子束, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100
Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100
Citation: Yu Yuanping, Li Haiyan, Gan Huaquan, et al. Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering[J]. High Power Laser and Particle Beams, 2023, 35: 082005. doi: 10.11884/HPLPB202335.230100

基于卡尔曼滤波的双约束CUP-VISAR压缩图像重构算法

doi: 10.11884/HPLPB202335.230100
基金项目: 国家自然科学基金项目(12127810, 51975125, 12105269)
详细信息
    作者简介:

    余远平,1762799572@qq.com

    通讯作者:

    李海艳,cathylhy@gdut.edu.cn

  • 中图分类号: TP391

Double-constrained CUP-VISAR compressed image reconstruction algorithm based on Kalman filtering

  • 摘要: 针对从基于压缩超快成像(Compressed Ultrafast Photography,CUP)的任意反射面速度干涉仪(Velocity Interferometer System for Any Reflector,VISAR)中获得的压缩图像中重构出冲击波二维条纹图像的问题,提出一种基于卡尔曼滤波的双约束图像重构算法。该算法首先基于条纹图像具有的稀疏性和平滑性,将问题转化为基于小波与全变分双先验约束的优化问题,然后,考虑到实际成像的噪声问题,采用加权卡尔曼滤波对图像已有信息进行预测和调整,最后将卡尔曼滤波引入二步迭代阈值算法的迭代过程中,进而求解该双约束优化问题,实现压缩图像的精确重构。在大噪声仿真实验中,该算法重构图像的峰值信噪比和结构相似度分别提高了4.8 dB和14.81%,显著提高了图像重构质量。在实际实验中,该算法重构出了清晰的冲击波条纹图像,且将冲击波速度最大相对误差降低了9.57%和平均相对误差降低了2.2%,验证了该算法的可行性。
  • 图  1  CUP-VISAR系统

    Figure  1.  CUP-VISAR system

    图  2  加权卡尔曼滤波原理图

    Figure  2.  Weighted Kalman filter principle diagram

    图  3  去噪流程图

    Figure  3.  Denoising flowchart

    图  4  仿真条纹图

    Figure  4.  Simulated fringes

    图  5  含噪的仿真2D-VISAR条纹图

    Figure  5.  Simulated 2D-VISAR stripes with noise

    图  6  模拟编码图像

    Figure  6.  Simulated coded image

    图  7  含噪的仿真CUP-VISAR观测图像

    Figure  7.  Simulated CUP-VISAR observation images with noise

    图  8  不同算法的重构结果图

    Figure  8.  Reconstruction results of different algorithms

    图  9  重构图像的PSNR和SSIM曲线图

    Figure  9.  PSNR and SSIM curves of reconstructed images

    图  10  实际实验光路图

    Figure  10.  Diagram of actual experimental optical path

    图  11  实际实验观测数据

    Figure  11.  Actual experimental observation data

    图  12  不同算法的重构结果图

    Figure  12.  Reconstruction results of different algorithms

    图  13  从重构图像得到的线-VISAR图

    Figure  13.  Line-VISAR diagram obtained from the reconstructed image

    图  14  冲击波速度曲线及相对误差图

    Figure  14.  Shock wave velocity and relative error

  • [1] Celliers P M, Erskine D J, Sorce C M, et al. A high-resolution two-dimensional imaging velocimeter[J]. Review of Scientific Instruments, 2010, 81: 035101. doi: 10.1063/1.3310076
    [2] 王峰, 关赞洋, 理玉龙, 等. 基于神光Ⅲ装置的光学诊断系统介绍[J]. 中国科学:物理学 力学 天文学, 2018, 48:065205

    Wang Feng, Guan Zanyang, Li Yulong, et al. Optical diagnostic systems based on Shenguang Ⅲ[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2018, 48: 065205
    [3] 吴宇际. 激光聚变中广角冲击波速度诊断方法及相关VISAR技术研究[D]. 合肥: 中国科学技术大学, 2019

    Wu Yuji. Wide-angle shock wave velocity diagnostic method and related VISAR technology in laser fusion[D]. Hefei: University of Science and Technology of China, 2019
    [4] 王巧巧. 大国重器——激光惯性约束聚变[J]. 现代物理知识, 2019, 31(3):41-49

    Wang Qiaoqiao. The pillars of a great power—laser inertial constraint fusion[J]. Modern Physics, 2019, 31(3): 41-49
    [5] 王强强. 飞秒时间分辨条纹相机的理论和实验研究[D]. 北京: 中国科学院西安光学精密机械研究所, 2014

    Wang Qiangqiang. Theoretical and experimental research on femtosecond temporal resolution streak camera[D]. Beijing: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2014.
    [6] Guan Zanyang, Li Yulong, Wang Feng, et al. Study on the length of diagnostic time window of CUP-VISAR[J]. Measurement Science and Technology, 2021, 32: 125208. doi: 10.1088/1361-6501/ac29d4
    [7] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [8] Gao Liang, Liang Jinyang, Li Chiye, et al. Single-shot compressed ultrafast photography at one hundred billion frames per second[J]. Nature, 2014, 516(7529): 74-77. doi: 10.1038/nature14005
    [9] Yang Yongmei, Li Yulong, Guan Zanyang, et al. A diagnostic system toward high-resolution measurement of wavefront profile[J]. Optics Communications, 2020, 456: 124554. doi: 10.1016/j.optcom.2019.124554
    [10] Madych W R. Solutions of underdetermined systems of linear equations[R]. Shaker Heights: Institute of Mathematical Statistics, 1991: 227-238.
    [11] Qureshi M A, Deriche M. A new wavelet based efficient image compression algorithm using compressive sensing[J]. Multimedia Tools and Applications, 2016, 75(12): 6737-6754. doi: 10.1007/s11042-015-2590-9
    [12] Pandey A K, Chaudhary J, Sharma A, et al. Optimum value of scale and threshold for compression of 99mTc-MDP bone scan images using Haar wavelet transform[J]. Indian Journal of Nuclear Medicine, 2022, 37(2): 154-161. doi: 10.4103/ijnm.ijnm_170_21
    [13] 查志远. 自适应范数约束图像正则化重建研究[D]. 昆明: 昆明理工大学, 2015

    Zha Zhiyuan. Research on image regularization reconstruction with adaptive norm constraints[D]. Kunming: Kunming University of Science and Technology, 2015
    [14] Mahdaoui A E, Ouahabi A, Moulay M S. Image denoising using a compressive sensing approach based on regularization constraints[J]. Sensors, 2022, 22: 2199. doi: 10.3390/s22062199
    [15] Afonso M V, Bioucas-Dias J M, Figueiredo M A T. An augmented Lagrangian approach to the constrained optimization formulation of imaging inverse problems[J]. IEEE Transactions on Image Processing, 2011, 20(3): 681-695. doi: 10.1109/TIP.2010.2076294
    [16] 张琦, 张慧, 潘健, 等. 一种新的卡尔曼滤波图像复原算法[J]. 湖北工业大学学报, 2022, 37(5):23-27

    Zhang Qi, Zhang Hui, Pan Jian, et al. A new Kalman filter image restoration algorithm[J]. Journal of Hubei University of Technology, 2022, 37(5): 23-27
    [17] Bioucas-Dias J M, Figueiredo M A T. A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration[J]. IEEE Transactions on Image Processing, 2007, 16(12): 2992-3004. doi: 10.1109/TIP.2007.909319
    [18] Sara U, Akter M, Uddin M S. Image quality assessment through FSIM, SSIM, MSE and PSNR—a comparative study[J]. Journal of Computer and Communications, 2019, 7(3): 8-18. doi: 10.4236/jcc.2019.73002
    [19] 朱里, 李乔亮, 张婷, 等. 基于结构相似性的图像质量评价方法[J]. 光电工程, 2007, 34(11):108-113

    Zhu Li, Li Qiaoliang, Zhang Ting, et al. Metric of image quality based on structural similarity[J]. Opto-Electronic Engineering, 2007, 34(11): 108-113
    [20] 孙雪. 基于提升算法的9/7整数小波变换的研究及硬件实现[D]. 哈尔滨: 哈尔滨工业大学, 2013

    Sun Xue. Design and implementation of 9/7 wavelet transform based lifting scheme[D]. Harbin: Harbin Institute of Technology, 2013
  • 加载中
图(14)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  159
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-23
  • 修回日期:  2023-06-17
  • 录用日期:  2023-06-12
  • 网络出版日期:  2023-06-28
  • 刊出日期:  2023-08-15

目录

    /

    返回文章
    返回