留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双驱动射频负氢离子源匹配网络设计与实验研究

阳璞琼 李宇乾 蒋才超 潘军军 刘波 陈世勇 谢远来

阳璞琼, 李宇乾, 蒋才超, 等. 双驱动射频负氢离子源匹配网络设计与实验研究[J]. 强激光与粒子束, 2024, 36: 016002. doi: 10.11884/HPLPB202436.230313
引用本文: 阳璞琼, 李宇乾, 蒋才超, 等. 双驱动射频负氢离子源匹配网络设计与实验研究[J]. 强激光与粒子束, 2024, 36: 016002. doi: 10.11884/HPLPB202436.230313
Yang Puqiong, Li Yuqian, Jiang Caichao, et al. Design and experimental study of matching networkfor dual drive RF negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2024, 36: 016002. doi: 10.11884/HPLPB202436.230313
Citation: Yang Puqiong, Li Yuqian, Jiang Caichao, et al. Design and experimental study of matching networkfor dual drive RF negative hydrogen ion source[J]. High Power Laser and Particle Beams, 2024, 36: 016002. doi: 10.11884/HPLPB202436.230313

双驱动射频负氢离子源匹配网络设计与实验研究

doi: 10.11884/HPLPB202436.230313
基金项目: 国家自然科学基金项目(11975263、12275121);聚变堆主机关键系统综合研究设施项目(2018-000052-73-01-001228);国家磁约束核聚变能发展研究专项(2019YFE03070000)
详细信息
    作者简介:

    阳璞琼,yangpuqiong@usc.edu.cn

    通讯作者:

    潘军军,pjj@ipp.ac.cn

  • 中图分类号: TL62

Design and experimental study of matching networkfor dual drive RF negative hydrogen ion source

  • 摘要: 随着磁约束聚变实验装置对中性束注入器的输出束流强度与脉冲时间的要求越来越高,开展高功率大面积射频离子源的研究迫在眉睫。为了实现大面积、高密度均匀等离子体放电,基于多驱动射频离子源的设计是当前的发展趋势,而阻抗匹配网络是射频功率源将最大功率输送至线圈并耦合至等离子体的关键,故对其结构设计和调谐特性的研究是不可或缺的。基于前期在单驱动射频离子源的研究基础上,结合双驱动射频离子源的放电需求,开展了双驱动阻抗匹配网络优化结构的设计与分析,通过实验中对匹配网络的调谐,成功实现了140 kW高功率和25 kW/1000 s长脉冲的稳定运行。随后在等离子体稳定放电的基础上研究了两个驱动器之间的功率分配均匀性问题,实验结果表明了该匹配网络的优化设计合理可行,上下驱动器的射频功率分配基本均匀。
  • 图  1  CRAFT NNBI射频功率传输系统示意图

    Figure  1.  Schematic of CRAFT NNBI RF power transmission system

    图  2  CRAFT NNBI双驱动器实物图

    Figure  2.  Real image of CRAFT NNBI dual driver

    图  3  双驱动器的匹配电路初始结构

    Figure  3.  Initial structure of dual driver matching circuit

    图  4  双驱动匹配电路优化结构

    Figure  4.  Optimization structures of dual drive matching circuit

    图  5  CRAFT NNBI功率传输系统现场图

    Figure  5.  On-site diagram of CRAFT NNBI power transmission system

    图  6  阻抗匹配网络

    Figure  6.  Impedance matching network

    图  7  矢量网络分析仪测量值

    Figure  7.  Measured value of vector network analyzer

    图  8  双驱动射频离子源高功率和长脉冲等离子体放电波形

    Figure  8.  High power and long pulse plasma discharge waveforms of dual drive RF ion source

    图  9  上下驱动器线圈能量沉积对比

    Figure  9.  Comparison of energy deposition between upper and lower drive coils

    表  1  双驱动射频离子源阻抗匹配网络的两个电容的电气参数

    Table  1.   Electrical parameters of two capacitors in the impedance matching network of a dual drive RF ion source

    Cs/nF $|I_{C_{\mathrm{s}}}| $/A $|U_{C_{\mathrm{s}}}| $/kV Cp/nF $|I_{C_{\mathrm{p}}} |$/A $|U_{C_{\mathrm{p}}}| $/kV
    1.4 316.2 34.8 4.2 91.6 3.4
    下载: 导出CSV
  • [1] 胡纯栋, 梁立振, 谢远来, 等. CFETR中性束注入系统概念设计[J]. 核聚变与等离子体物理, 2022, 42(4):388-392 doi: 10.16568/j.0254-6086.202204005

    Hu Chundong, Liang Lizhen, Xie Yuanlai, et al. Conceptual design of neutral beam injection system for CFETR[J]. Nuclear Fusion and Plasma Physics, 2022, 42(4): 388-392 doi: 10.16568/j.0254-6086.202204005
    [2] 谢亚红, 胡纯栋, 韦江龙, 等. CFETR中性束注入系统负离子束源概念设计[J]. 核聚变与等离子体物理, 2021, 41(4):628-634 doi: 10.16568/j.0254-6086.202104008

    Xie Yahong, Hu Chundong, Wei Jianglong, et al. Conceptual design of negative ion based beam source for CFETR neutral beam injector[J]. Nuclear Fusion and Plasma Physics, 2021, 41(4): 628-634 doi: 10.16568/j.0254-6086.202104008
    [3] Yang Puqiong, Liu Bo, Jiang Caichao, et al. Impedance characteristic analysis and preliminary experimental results of a high-power RF plasma source[J]. IEEE Transactions on Plasma Science, 2022, 50(4): 775-781. doi: 10.1109/TPS.2022.3154397
    [4] Fantz U, Franzen P, Wünderlich D. Development of negative hydrogen ion sources for fusion: Experiments and modelling[J]. Chemical Physics, 2012, 398: 7-16. doi: 10.1016/j.chemphys.2011.05.006
    [5] 蒋才超. 大功率RF离子源功率馈入关键技术及实验研究[D]. 合肥: 中国科学技术大学, 2019

    Jiang Caichao. Study on key technology and experiment of power feed-in for high power RF ion source[D]. Hefei: University of Science and Technology of China, 2019
    [6] Jiang Caichao, Hu Chundong, Xie Yahong, et al. Design and preliminary results of matching network for MW scale high current RF ion source[J]. Fusion Science and Technology, 2017, 72(3): 496-499.
    [7] Jiang Caichao, Hu Chundong, Wei Jianglong, et al. Design of power supply system for the prototype RF-driven negative ion source for neutral beam injection application[J]. Fusion Engineering and Design, 2017, 117: 100-106. doi: 10.1016/j.fusengdes.2017.02.091
    [8] Marcuzzi D, Palma M D, Pavei M, et al. Detailed design of the RF source for the 1 MV neutral beam test facility[J]. Fusion Engineering and Design, 2009, 84(7/11): 1253-1258.
    [9] Sudhir D, Bandyopadhyay M, Kraus W, et al. Online tuning of impedance matching circuit for long pulse inductively coupled plasma source operation—An alternate approach[J]. Review of Scientific Instruments, 2014, 85: 013510. doi: 10.1063/1.4863098
    [10] Kraus W, Fantz U, Heinemann B, et al. Solid state generator for powerful radio frequency ion sources in neutral beam injection systems[J]. Fusion Engineering and Design, 2015, 91: 16-20. doi: 10.1016/j.fusengdes.2014.11.015
    [11] 岳海昆, 李冬, 刘开锋, 等. 大功率RF离子源阻抗匹配电路的设计与实现[J]. 核聚变与等离子体物理, 2015, 35(4):346-349 doi: 10.16568/j.0254-6086.201504010

    Yue Haikun, Li Dong, Liu Kaifeng, et al. Design and implementation of the matching unit for a high-power RF based ion source[J]. Nuclear Fusion and Plasma Physics, 2015, 35(4): 346-349 doi: 10.16568/j.0254-6086.201504010
    [12] Franzen P, Falter H, Heinemann B, et al. RADI—A RF source size-scaling experiment towards the ITER neutral beam negative ion source[J]. Fusion Engineering and Design, 2007, 82(4): 407-423. doi: 10.1016/j.fusengdes.2007.03.041
    [13] Zamengo A, Recchia M, Kraus W, et al. Electrical and thermal analyses for the radio-frequency circuit of ITER NBI ion source[J]. Fusion Engineering and Design, 2009, 84(7/11): 2025-2030.
    [14] 阳璞琼, 刘波, 蒋才超, 等. 大功率射频离子源驱动器等效阻抗特性分析[J]. 核技术, 2021, 44:080603 doi: 10.11889/j.0253-3219.2021.hjs.44.080603

    Yang Puqiong, Liu Bo, Jiang Caichao, et al. Analysis of equivalent impedance characteristics of a high power RF ion source driver[J]. Nuclear Techniques, 2021, 44: 080603 doi: 10.11889/j.0253-3219.2021.hjs.44.080603
    [15] Jiang Caichao, Hu Chundong, Xie Yahong, et al. Analysis and experimental study of impedance matching characteristic of RF ion source on neutral beam injector[J]. IEEE Transactions on Plasma Science, 2018, 46(7): 2677-2679. doi: 10.1109/TPS.2017.2778724
    [16] Huh S R, Park M, Jung B K, et al. Preliminary design of an impedance matching circuit for a high power rectangular RF driven ion source[J]. Fusion Engineering and Design, 2017, 121: 337-341. doi: 10.1016/j.fusengdes.2017.04.121
    [17] Yue Haikun, Li Dong, Zhao Peng, et al. The matching unit for the RF ion source at HUST[J]. Journal of Fusion Energy, 2015, 34(6): 1229-1233. doi: 10.1007/s10894-015-9944-1
    [18] 陈俞钱, 苏国建, 谢亚红, 等. 大面积射频离子源等离子体激励模拟研究[J]. 核科学与工程, 2023, 43(5):1174-1181

    Chen Yuqian, Su Guojian, Xie Yahong, et al. Simulation study of plasma generation of radio frequency ion source with large area[J]. Nuclear Science and Engineering, 2023, 43(5): 1174-1181
    [19] Wang Na, Liu Zhimin, Xie Yahong, et al. An analysis and preliminary experiment of the discharge characteristics of RF ion source with electromagnetic shielding[J]. Plasma Science and Technology, 2023, 25: 045601. doi: 10.1088/2058-6272/aca1fb
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  158
  • HTML全文浏览量:  116
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-12-10
  • 录用日期:  2023-12-10
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回