留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种旋转移相式高功率微波反射阵列天线

许亮 张强 袁成卫 刘金亮 孙云飞 龚鸿州 刘东琪

许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379
引用本文: 许亮, 张强, 袁成卫, 等. 一种旋转移相式高功率微波反射阵列天线[J]. 强激光与粒子束, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379
Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379
Citation: Xu Liang, Zhang Qiang, Yuan Chengwei, et al. A high-power microwave reflectarray antenna based onvariable rotation technique[J]. High Power Laser and Particle Beams, 2024, 36: 013002. doi: 10.11884/HPLPB202436.230379

一种旋转移相式高功率微波反射阵列天线

doi: 10.11884/HPLPB202436.230379
详细信息
    作者简介:

    许 亮,784151904@163.com

    通讯作者:

    袁成卫,cwyuan@nudt.edu.cn

    刘金亮,llle333@163.com

  • 中图分类号: TN82

A high-power microwave reflectarray antenna based onvariable rotation technique

  • 摘要: 利用旋转移相技术的几何相位调控方法,提出一种基于传输相位差概念的波束扫描高功率微波反射阵列天线。电磁仿真结果表明,所设计的三叉戟形反射阵列天线单元工作于9.5~10.5 GHz,在0~40°入射角度下具有360°范围内的线性相位调控能力,真空条件下的功率容量达到1.11 GW。采用该单元设计了半径为200 mm的圆形口径反射阵列天线,并使用全波仿真软件进行验证,利用口径相位分布的可重构特性,所设计的反射阵列天线可以实现±40°范围内的波束扫描。在10 GHz时,波束扫描过程中的增益下降小于1.7 dB,最大增益达到31.1 dBi,对应口径效率为73.42%,最低口径效率超过50%,副瓣电平和轴比始终低于−18.7 dB和1.6 dB。
  • 图  1  三叉戟形反射阵列天线单元结构示意图

    Figure  1.  Configuration of the trident-shaped reflectarray antenna element

    图  2  三叉戟形反射阵列天线单元的传输模型分析

    Figure  2.  Transmission model analysis of the trident-shaped reflectarray antenna element

    图  3  三叉戟形反射阵列天线单元仿真结果

    Figure  3.  Simulation results of the trident-shaped reflectarray antenna element

    图  4  三叉戟形反射阵列天线单元的共极化分布曲线与场分布曲线

    Figure  4.  Co-polarization component and maximum E-field distribution of the trident-shaped reflectarray antenna element

    图  5  馈源天线和反射阵列天线构型

    Figure  5.  Configuration of the feed antenna and the trident-shaped reflectarray antenna

    图  6  不同波束扫描状态下的口径相位分布

    Figure  6.  Aperture phase distribution of different beam scanning states

    图  7  三叉戟形反射阵列天线三维辐射方向图

    Figure  7.  Three-dimensional radiation patterns of the trident-shaped reflectarray antenna

    图  8  三叉戟形反射阵列天线归一化辐射方向图

    Figure  8.  Normalized radiation patterns of the trident-shaped reflectarray antenna

    图  9  三叉戟形反射阵列天线电场分布(10 GHz)

    Figure  9.  E-field distribution of the trident-shaped reflectarray antenna (10 GHz)

    表  1  三叉戟形反射阵列天线单元结构参数

    Table  1.   Geometry parameters of the trident-shaped reflectarray antenna element (mm)

    l h h1 h2 h3 h4 h5 h6 t1 b1
    11.5 23 16 2 6 18 2 2.5 2.5 1
    d1 d2 d3 d4 d5 d6 w1 w2 w3
    18.5 18.9 9 4 2 5 4.7 3.9 2
    下载: 导出CSV

    表  2  三叉戟形反射阵列天线不同波束指向下的辐射特性(10 GHz)

    Table  2.   Performance of the trident-shaped reflectarray antenna in different beam scanning states (10 GHz)

    beam direction/(º) gain/dBi sidelobe level/dB axial ratio/dB aperture efficiency/%
    (0,90) 30.91 −24.0 0.032 70.28
    (10,90) 31.10 −21.2 0.132 73.42
    (20,90) 30.86 −18.7 0.317 69.47
    (30,90) 30.43 −22.9 0.467 62.92
    (40,90) 29.47 −22.6 1.553 50.45
    (40,45) 29.63 −25.6 1.426 52.34
    下载: 导出CSV
  • [1] Guo Letian, Huang Wenhua, Chang Chao, et al. Studies of a leaky-wave phased array antenna for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2016, 44(10): 2366-2375. doi: 10.1109/TPS.2016.2601105
    [2] Yang Yiming, Yuan Chengwei, Qian Baoliang. A beam steering antenna for X-band high power applications[J]. AEU - International Journal of Electronics and Communications, 2014, 68(8): 763-766. doi: 10.1016/j.aeue.2014.03.002
    [3] 李佳伟, 黄文华, 梁铁柱, 等. 基于漏波波导的X波段高功率微波天线[J]. 强激光与粒子束, 2011, 23(8):2125-2129 doi: 10.3788/HPLPB20112308.2125

    Li Jiawei, Huang Wenhua, Liang Tiezhu, et al. Design and simulation of X-band HPM antenna based on leaky waveguide[J]. High Power Laser and Particle Beams, 2011, 23(8): 2125-2129 doi: 10.3788/HPLPB20112308.2125
    [4] Li Xiangqiang, Liu Qingxiang, Wu Xiaojiang, et al. A GW level high-power radial line helical array antenna[J]. IEEE Transactions on Antennas and Propagation, 2008, 56(9): 2943-2948. doi: 10.1109/TAP.2008.928781
    [5] Li Xiangqiang, Liu Qingxiang, Zhang Jianqiong, et al. 16-element single-layer rectangular radial line helical array antenna for high-power applications[J]. IEEE Antennas and Wireless Propagation Letters, 2010, 9: 708-711. doi: 10.1109/LAWP.2010.2059371
    [6] Yu Longzhou, Yuan Chengwei, He Juntao, et al. Beam steerable array antenna based on rectangular waveguide for high-power microwave applications[J]. IEEE Transactions on Plasma Science, 2019, 47(1): 535-541. doi: 10.1109/TPS.2018.2884290
    [7] Zhao Xuelong, Yuan Chengwei, Liu Lie, et al. All-metal transmit-array for circular polarization design using rotated cross-slot elements for high power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(6): 3253-3256.
    [8] Sun Yunfei, Dang Fangchao, Yuan Chengwei, et al. A beam-steerable lens antenna for Ku-band high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(11): 7580-7583. doi: 10.1109/TAP.2020.2979282
    [9] Sun Yunfei, He Juntao, Yuan Chengwei, et al. Ku-band radial-line continuous transverse stub antenna with transmit-array lens for high-power microwave application[J]. IEEE Transactions on Antennas and Propagation, 2020, 68(3): 2050-2059. doi: 10.1109/TAP.2019.2949117
    [10] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A wideband reconfigurable dual-branch helical reflectarray antenna for high-power microwave applications[J]. IEEE Transactions on Antennas and Propagation, 2021, 69(2): 825-833. doi: 10.1109/TAP.2020.3016379
    [11] Zhao Xuhao, Xu Liang, Zhang Jiande, et al. A dielectric embedded reflectarray for high-power microwave application[J]. Review of Scientific Instruments, 2022, 93: 064703. doi: 10.1063/5.0091106
    [12] Kong Gexing, Li Xiangqiang, Wang Qingfeng, et al. A dual-band circularly polarized elliptical patch reflectarray antenna for high-power microwave applications[J]. IEEE Access, 2021, 9: 74522-74530. doi: 10.1109/ACCESS.2021.3080823
    [13] Huang J, Pogorzelski R J. A Ka-band microstrip reflectarray with elements having variable rotation angles[J]. IEEE Transactions on Antennas and Propagation, 1998, 46(5): 650-656. doi: 10.1109/8.668907
    [14] Mao Yilin, Xu Shenheng, Yang Fan, et al. A novel phase synthesis approach for wideband reflectarray design[J]. IEEE Transactions on Antennas and Propagation, 2015, 63(9): 4189-4193. doi: 10.1109/TAP.2015.2447004
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  290
  • HTML全文浏览量:  191
  • PDF下载量:  128
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-30
  • 修回日期:  2023-12-26
  • 录用日期:  2023-12-26
  • 网络出版日期:  2024-01-15
  • 刊出日期:  2024-01-15

目录

    /

    返回文章
    返回