Trapezoidal double-ridge waveguide slow wave structure for 340 GHz backward wave oscillator
-
摘要: 为进一步提高返波管的耦合阻抗和输出功率,提出了一种梯形双脊波导慢波结构。与正弦双脊波导和平顶型正弦双脊波导相比,在归一化相速度基本一致时,梯形双脊波导的电子注通道中心轴线耦合阻抗和截面平均耦合阻抗都得到了显著提升。仿真结果显示,在320~360 GHz频带范围内,其平均耦合阻抗较正弦双脊波导提升78.33%~86.97%,较平顶型正弦双脊波导提升至少46.65%。在相同工作条件及频带范围内,梯形双脊波导返波管在340 GHz频段的输出功率为5.55~8.03 W,比正弦双脊波导返波管提升26.97%~73.44%,比平顶型正弦双脊波导返波管提升33.65%~52.47%。此时三种返波管均为最佳管长,梯形双脊波导返波管可比另两种结构缩短至少16.5%。Abstract:
Background Terahertz waves are widely utilized in radar, communications, and electronic warfare due to their unique properties, making terahertz radiation sources a critical research focus. As one of the primary terahertz sources, the backward wave oscillator (BWO) is a vacuum electronic device based on the interaction between the electron beam and the slow-wave structure (SWS). As the core component, the SWS significantly influences BWO performance. Recent studies have proposed various terahertz SWS designs, however, high losses in the terahertz band and low interaction impedance of existing SWSs remain key limiting factors for terahertz vacuum electronic devices.Purpose This study aims to address these challenges by proposing a trapezoidal double ridge waveguide (TRWG) SWS, with the goal of enhancing interaction impedance to improve BWO output power.Methods The electric field distributions of the TRWG, sinusoidal double-ridge waveguide (SRWG), and flat-roofed SRWG were compared. Both on-axis and average interaction impedance were evaluated at the identical normalized phase velocities. The TRWG geometry was optimized through simulation, and input/output structures were designed. Performance comparisons were conducted using particle-in-cell (PIC) simulations.Results Simulation results indicate that in the frequency range of 320 to 360 GHz, the average interaction impedance of the TRWG is 78.33%−86.97% higher than that of the SRWG and at least 46.65% higher than that of the flat-roofed SRWG. Under the same operating conditions and within the same frequency range, the output power of the TRWG BWO in the 340 GHz band reaches 5.55−8.03 W, representing an increase of 26.97% to 73.44% compared to the SRWG BWO and an enhancement of 33.65%−52.47% over the flat-roofed SRWG BWO. After optimizing the tube length for all three BWOs, the TRWG BWO is at least 16.5% shorter than the other two structures.Conclusions The TRWG SWS exhibits superior interaction impedance and output power compared to the other designs, offering a promising solution for high-performance terahertz BWOs. -
表 1 梯形双脊波导尺寸参数
Table 1. Parameters of TRWG
(mm) a b Rw w h p r hb 0.80 0.36 0.20 0.05 0.09 0.16 0.08 0 -
[1] 王文祥. 微波工程技术[M]. 北京: 国防工业出版社, 2009: 1-677Wang Wenxiang. Microwave engineering technology[M]. Beijing: National Defense Industry Press, 2009: 1-677 [2] Abrams R H, Levush B, Mondelli A A, et al. Vacuum electronics for the 21st century[J]. IEEE Microwave Magazine, 2001, 2(3): 61-72. doi: 10.1109/6668.951550 [3] Qiu J X, Levush B, Pasour J, et al. Vacuum tube amplifiers[J]. IEEE Microwave Magazine, 2009, 10(7): 38-51. doi: 10.1109/MMM.2009.934517 [4] Chong C K, Menninger W L. Latest advancements in high-power millimeter-wave helix TWTs[J]. IEEE Transactions on Plasma Science, 2010, 38(6): 1227-1238. doi: 10.1109/TPS.2010.2041940 [5] Hu Linlin, Cai Jinchi, Chen Hongbin. Applications and development of terahertz backward wave oscillators[J]. Acta Electronica Sinica, 2016, 44(4): 974-982. [6] Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman[C]//Proceedings of the IVEC 2012. 2012: 553-554. [7] Tucek J, Kreischer K, Gallagher D, et al. Development and operation of a 650 GHz folded waveguide source[C]//Proceedings of 2007 IEEE International Vacuum Electronics Conference. 2007: 1-2. [8] Zhou Quanfeng, Song Rui, Lei Wenqiang, et al. Development of a 0.22THz folded waveguide travelling wave tube[C]//Proceedings of 2015 IEEE International Vacuum Electronics Conference. 2015: 1-2. [9] Wang Zhanliang, Zhou Qing, Gong Huarong, et al. Development of a 140-GHz folded-waveguide traveling-wave tube in a relatively larger circular electron beam tunnel[J]. Journal of Electromagnetic Waves and Applications, 2017, 31(17): 1914-1923. doi: 10.1080/09205071.2017.1341346 [10] Tian Yanyan, Yue Lingna, Xu Jin, et al. A novel slow-wave structure—Folded rectangular groove waveguide for millimeter-wave TWT[J]. IEEE Transactions on Electron Devices, 2012, 59(2): 510-515. doi: 10.1109/TED.2011.2175929 [11] Field M, Kimura T, Atkinson J, et al. Development of a 100-W 200-GHz high bandwidth mm-wave amplifier[J]. IEEE Transactions on Electron Devices, 2018, 65(6): 2122-2128. doi: 10.1109/TED.2018.2790411 [12] Zhang Changqing, Pan Pan, Cai Jun, et al. Demonstration of a PCM-focused sheet beam TWT amplifier at G-band[J]. IEEE Transactions on Electron Devices, 2023, 70(6): 2798-2803. doi: 10.1109/TED.2022.3233291 [13] 赖剑强. 交错双栅慢波结构的应用研究[D]. 成都: 电子科技大学, 2012: 69-90Lai Jianqiang. Research on applications of staggered double vane slow-wave structure[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 69-90 [14] 赖剑强, 魏彦玉, 黄民智, 等. W波段交错双栅返波振荡器高频系统[J]. 强激光与粒子束, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164Lai Jianqiang, Wei Yanyu, Huang Minzhi, et al. RF circuit for W-band staggered double vane backward wave oscillator[J]. High Power Laser and Particle Beams, 2012, 24(9): 2164-2168 doi: 10.3788/HPLPB20122409.2164 [15] 冯霖琦, 岳玲娜, 徐进, 等. 一种宽带瓦量级交错双栅脊波导返波振荡器的研究[J]. 强激光与粒子束, 2023, 35(12): 123001 doi: 10.11884/HPLPB202335.230150Feng Linqi, Yue Lingna, Xu Jin, et al. Investigation of a wide band watt level backward wave oscillator based on ridged double staggered grating waveguide[J]. High Power Laser and Particle Beams, 2023, 35: 123001 doi: 10.11884/HPLPB202335.230150 [16] Xu Xiong, Wei Yanyu, Shen Fei, et al. Sine waveguide for 0.22-THz traveling-wave tube[J]. IEEE Electron Device Letters, 2011, 32(8): 1152-1154. doi: 10.1109/LED.2011.2158060 [17] Zhang Luqi, Wei Yanyu, Jiang Xuebing, et al. A truncated sine waveguide for G-band TWT[C]//Proceedings of 2017 Eighteenth International Vacuum Electronics Conference. 2017: 1-2. [18] Lu Zhigang, Zhu Meiling, Ding Kesen, et al. Investigation of double tunnel sine waveguide slow-wave structure for terahertz dual-beam TWT[J]. IEEE Transactions on Electron Devices, 2020, 67(5): 2176-2181. doi: 10.1109/TED.2020.2981992 [19] Zhang Luqi, Wei Yanyu, Guo Guo, et al. A ridge-loaded sine waveguide for G-band traveling-wave tube[J]. IEEE Transactions on Plasma Science, 2016, 44(11): 2832-2837. doi: 10.1109/TPS.2016.2605161 [20] Zhang Luqi, Wei Yanyu, Guo Guo, et al. An ultra-broadband watt-level terahertz BWO based upon novel sine shape ridge waveguide[J]. Journal of Physics D: Applied Physics, 2016, 49: 235102. doi: 10.1088/0022-3727/49/23/235102 [21] Yue Lingna, Bai Ziqing, Feng Linqi, et al. Investigation of a 300–350 GHz BWO with flat-roofed sine double ridge waveguide and Brewster window[J]. IEEE Transactions on Electron Devices, 2024, 71(11): 7049-7055. doi: 10.1109/TED.2024.3453784 -
下载: