留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高能同步辐射光源模拟束流信号发生器研制

周代全 张鸿 魏书军 曹建社 李宜林 许亮 高国栋

周代全, 张鸿, 魏书军, 等. 高能同步辐射光源模拟束流信号发生器研制[J]. 强激光与粒子束, 2025, 37: 124002. doi: 10.11884/HPLPB202537.250161
引用本文: 周代全, 张鸿, 魏书军, 等. 高能同步辐射光源模拟束流信号发生器研制[J]. 强激光与粒子束, 2025, 37: 124002. doi: 10.11884/HPLPB202537.250161
Zhou Daiquan, Zhang Hong, Wei Shujun, et al. Development of a BPM signal generator for FOFB test system of HEPS[J]. High Power Laser and Particle Beams, 2025, 37: 124002. doi: 10.11884/HPLPB202537.250161
Citation: Zhou Daiquan, Zhang Hong, Wei Shujun, et al. Development of a BPM signal generator for FOFB test system of HEPS[J]. High Power Laser and Particle Beams, 2025, 37: 124002. doi: 10.11884/HPLPB202537.250161

高能同步辐射光源模拟束流信号发生器研制

doi: 10.11884/HPLPB202537.250161
基金项目: 中国博士后科学基金项目(2024M751760)
详细信息
    作者简介:

    周代全,zhoudq@ihep.ac.cn

    通讯作者:

    张 鸿,hongzhang@ihep.ac.cn

    魏书军,weisj@ihep.ac.cn

    曹建社,caojs@ihep.ac.cn

  • 中图分类号: TL506

Development of a BPM signal generator for FOFB test system of HEPS

  • 摘要: 高能同步辐射光源(HEPS)快轨道反馈控制系统(FOFB)用于HEPS储存环的轨道反馈控制。针对FOFB系统的调试需求研制了一套用于FOFB测试的束流信号模拟发生器,其包含四路信号且幅值独立可调的输出端口,可实现在实验室无束流条件下对真实束流探测器(BPM)信号的模拟输出。该信号发生器具有结构简单、造价低和重复稳定性高等优点,简化了FOFB系统的调试过程。研制工作围绕该脉冲信号发生器展开,详细介绍了其硬件电路设计方案并给出了测试结果。
  • 图  1  HEPS快轨道反馈控制系统功能框图

    Figure  1.  Functional block diagram of HEPS fast beam orbit feedback control system

    图  2  HEPS快轨道反馈控制系统的结构示意图

    Figure  2.  Schematic diagram of the structure of the HEPS fast beam orbit feedback control system

    图  3  信号发生器模拟的束流信号

    Figure  3.  Beam signals simulated by signal generators

    图  4  FOFB测试系统示意图。

    Figure  4.  Schematic diagram of the FOFB test system

    图  5  信号发生器系统结构示意图。

    Figure  5.  Schematic diagram of the signal generator system

    图  6  信号发生器性能测试实验平台示意图

    Figure  6.  Schematic diagram of the signal generator performance test experimental platform

    图  7  FPGA管脚输出的方波信号,频率250 MHz,占空比25%

    Figure  7.  The square wave signal output by the FPGA is 250 MHz with a duty cycle of 25%.

    图  8  FPGA管脚直接输出的触发信号和由6个pattern组合的方波信号

    Figure  8.  FPGA output a trigger signal directly and a square wave signal composed of 6 patterns

    图  9  信号发生器输出的单个模拟束流信号

    Figure  9.  A single analog beam signal output by a signal generator

    图  10  衰减器测试结果。绿色线为触发信号,黄色为0 dB衰减,蓝色为15.5 dB衰减,紫色为4 dB衰减

    Figure  10.  Attenuator test results. The green line is the trigger signal, the yellow line is the 0 dB attenuation, the blue line is the 15.5 dB attenuation, and the purple line is the 4 dB attenuation

    图  11  不同衰减值下信号发生器四个通道输出信号的幅度

    Figure  11.  Amplitude of the output signal of the four channels of the signal generator under different attenuation values

    图  12  信号发生器输出的220 kHz模拟束流信号,1个pattern包括10个模拟束流脉冲

    Figure  12.  The signal generator outputs a 220 kHz analog beam signal, and 1 pattern includes 10 analog beam pulses

    图  13  信号发生器输出的220 kHz模拟束流信号,6个pattern,每个pattern有10个模拟束流脉冲

    Figure  13.  The signal generator outputs a 220 kHz analog beam signal with 5 patterns, each pattern with 10 analog beam pulses

    图  14  信号发生器输出的模拟BEPCII逐圈束流信号,触发频率1.21 MHz

    Figure  14.  Analog BEPCII turn-by-turn beam signal output from the signal generator with a trigger frequency of 1.21 MHz

    图  15  信号发生器输出220 kHz、脉冲间隔16 ns、脉冲数量20个的模拟束流信号时,BPM电子学计算的位置结果

    Figure  15.  Position result calculated by BPM electronics, when the signal generator outputs an analog beam signal of 220 kHz, 16 ns bunch spacing and 20 pulses

    图  16  信号发生器输出220 kHz、脉冲间隔80 ns、脉冲数量20个的模拟束流信号时,BPM电子学计算的位置结果

    Figure  16.  Position result calculated by BPM electronics when the signal generator outputs an analog beam signal of 220 kHz, 80 ns bunch spacing, and 20 pulses

    表  1  ZX60-33LN-S+主要参数

    Table  1.   The main parameters of ZX60-33LN-S

    bandwidth/
    MHz
    noise/
    dB
    output
    power/dBm
    OIP3/
    dBm
    gain/dB power supply
    voltage/V
    input RF
    power/dBm
    power
    dissipation/W
    50~3000 1.1(Typ) maximum
    +19 (Typ)
    maximum
    +35 (Typ)
    24.67
    (100 MHz)
    22.93
    (400 MHz)
    21.44
    (600 MHz)
    18.71
    (1000 MHz)
    +5 Maximum
    +13
    0.44
    下载: 导出CSV

    表  2  XQY-PS4-DC/6-SE主要参数

    Table  2.   The main parameters of XQY-PS4-DC/6-SE

    insertion loss/dB input standing wave output standing wave isolation/dB amplitude balance/dB phase balance/(°) impedance/Ω
    ≤14.0 maximum
    1.25(Typ.1.11)
    maximum
    1.25(Typ.1.10)
    minimum 6.0 ±0.5 ±5 50
    下载: 导出CSV

    表  3  PE4302主要参数

    Table  3.   The main parameters of PE4302

    power
    supply/V
    bit number/
    bit
    minimum step
    accuracy/dB
    attenuation
    range/dB
    maximum input
    power/dBm
    input and output
    impedance/Ω
    external control
    level/V
    S21 insertion
    loss/dB
    +5~+12 6 0.5 0~+31.5 ≤+30 50 3.3 better than −1.5(1 GHz)
    下载: 导出CSV
  • [1] 姜晓明, 王九庆, 秦庆, 等. 中国高能同步辐射光源及其验证装置工程[J]. 中国科学: 物理学 力学 天文学, 2014, 44(10): 1075-1094

    Jiang Xiaoming, Wang Jiuqing, Qin Qing, et al. Chinese high energy photon source and the test facility[J]. SCIENTIA SINICA Physica, Mechanica & Astronomica, 2014, 44(10): 1075-1094
    [2] Jiao Yi, Xu Gang, Cui Xiaohao, et al. The HEPS project[J]. Journal of Synchrotron Radiation, 2018, 25(6): 1611-1618. doi: 10.1107/S1600577518012110
    [3] 焦毅, 潘卫民. 高能同步辐射光源[J]. 强激光与粒子束, 2022, 34: 104002 doi: 10.11884/HPLPB202234.220080

    Jiao Yi, Pan Weimin. High energy photon source[J]. High Power Laser and Particle Beams, 2022, 34: 104002 doi: 10.11884/HPLPB202234.220080
    [4] Uzun I S, Bartolini R, Rehm G, et al. Initial design of the fast orbit feedback system for diamond light source[C]//Proceedings of the 10th ICALEPCS International Conferences on Accelerator and Large Experimental Physics Control Systems. 2005: PO2.030-2.
    [5] Uzun I S. Diamond light source fast orbit feedback communication controller specification and design[R]. Diamond Internal Report, 2009.
    [6] Olmos A, Moldes J, Blanch S, et al. First steps towards a fast orbit feedback at ALBA[C]//Proceedings of IBIC2013. 2013: 727-730.
    [7] Olmos A, Moldes J, Petrocelli R, et al. Commissioning of the alba fast orbit feedback system[C]//Proceedings of IBIC2014. 2014: 691-695.
    [8] Kongtawong S, Yang Xi, Ha K, et al. NSLS-II FOFB performance improvement in 2019[R]. Upton: Brookhaven National Laboratory, 2019.
    [9] 唐旭辉, 何俊, 岳军会, 等. 束流位置探测器自动标定系统研制[J]. 核技术, 2022, 45: 020102 doi: 10.11889/j.0253-3219.2022.hjs.45.020102

    Tang Xuhui, He Jun, Yue Junhui, et al. Development of an automatic calibration system for beam position monitor[J]. Nuclear Techniques, 2022, 45: 020102 doi: 10.11889/j.0253-3219.2022.hjs.45.020102
    [10] 王贵诚, 王筠华, 蒋道满, 等. BPM定标系统及其应用[J]. 核技术, 2003, 26(4): 254-256 doi: 10.3321/j.issn:0253-3219.2003.04.002

    Wang Guicheng, Wang Junhua, Jiang Daoman, et al. A BPM calibration system and its application[J]. Nuclear Techniques, 2003, 26(4): 254-256 doi: 10.3321/j.issn:0253-3219.2003.04.002
    [11] 李勤, 何小中, 蒋薇, 等. 强流脉冲束流位置探测器标定装置物理设计[J]. 强激光与粒子束, 2023, 35: 034002 doi: 10.11884/HPLPB202335.220224

    Li Qin, He Xiaozhong, Jiang Wei, et al. Physical design of calibrated device for intense pulse electron beam position monitor[J]. High Power Laser and Particle Beams, 2023, 35: 034002 doi: 10.11884/HPLPB202335.220224
    [12] 王道远. HEPS快速轨道反馈系统关键技术研究[D]. 北京: 中国科学院高能物理研究所, 2023

    Wang Daoyuan. Research on key technologies of HEPS fast orbital feedback system[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2023
    [13] 黄玺洋, 魏源源, 许海生. HEPS轨道反馈物理需求[R]. 北京: 中国科学院高能物理研究所, 2023

    Huang Xiyang, Wei Yuanyuan, Xu Haisheng. Physical requirements for HEPS orbital feedback[R]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2023
    [14] 高国栋, 刘鹏, 龙锋利, 等. HEPS快速轨道反馈系统网络拓扑结构的设计与实现[J]. 核技术, 2023, 46: 050102 doi: 10.11889/j.0253-3219.2023.hjs.46.050102

    Gao Guodong, Liu Peng, Long Fengli, et al. Design and implementation of network topology for HEPS fast orbit feedback system[J]. Nuclear Techniques, 2023, 46: 050102 doi: 10.11889/j.0253-3219.2023.hjs.46.050102
    [15] 高国栋. 高能同步辐射光源快速轨道反馈系统的研究[D]. 北京: 中国科学院高能物理研究所, 2024

    Gao Guodong. Research on fast orbit feedback system for high-energy synchrotron radiation light sources[D]. Beijing: Institute of High Energy Physics, Chinese Academy of Sciences, 2024
    [16] 刘佳阳, 麻惠洲, 杜垚垚, 等. 单次通过型束流位置探测器的束流位置测量方法[J]. 强激光与粒子束, 2023, 35: 124008 doi: 10.11884/HPLPB202335.230264

    Liu Jiayang, Ma Huizhou, Du Yaoyao, et al. Measurement method for beam position of single pass beam position monitor[J]. High Power Laser and Particle Beams, 2023, 35: 124008 doi: 10.11884/HPLPB202335.230264
    [17] 叶强, 张醒儿, 随艳峰, 等. 数字BPM数字采样电子学研制[J]. 核电子学与探测技术, 2020, 40(6): 855-860 doi: 10.3969/j.issn.0258-0934.2020.06.001

    Ye Qiang, Zhang Xing’er, Sui Yanfeng, et al. The development of digital BPM digital acquisition electronics[J]. Nuclear Electronics & Detection Technology, 2020, 40(6): 855-860 doi: 10.3969/j.issn.0258-0934.2020.06.001
    [18] 随艳峰, 杜垚垚, 叶强, 等. 基于BEPCⅡ数字束流位置测量系统电子学系统的设计与实现[J]. 原子能科学技术, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044

    Sui Yanfeng, Du Yaoyao, Ye Qiang, et al. Development of digital beam position monitor electronics system based on BEPCⅡ[J]. Atomic Energy Science and Technology, 2020, 54(1): 172-178 doi: 10.7538/yzk.2019.youxian.0044
  • 加载中
图(16) / 表(3)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  167
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-06-06
  • 修回日期:  2025-08-20
  • 录用日期:  2025-08-20
  • 网络出版日期:  2025-09-06
  • 刊出日期:  2025-11-06

目录

    /

    返回文章
    返回