留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于实验物理及工业控制系统的数控电源原理

段吟池 李格 翁志远 周银贵

段吟池, 李格, 翁志远, 等. 基于实验物理及工业控制系统的数控电源原理[J]. 强激光与粒子束, 2018, 30: 025002. doi: 10.11884/HPLPB201830.170134
引用本文: 段吟池, 李格, 翁志远, 等. 基于实验物理及工业控制系统的数控电源原理[J]. 强激光与粒子束, 2018, 30: 025002. doi: 10.11884/HPLPB201830.170134
Duan Yinchi, Li Ge, Weng Zhiyuan, et al. Digital power supplies based on experimental physics and industrial control system[J]. High Power Laser and Particle Beams, 2018, 30: 025002. doi: 10.11884/HPLPB201830.170134
Citation: Duan Yinchi, Li Ge, Weng Zhiyuan, et al. Digital power supplies based on experimental physics and industrial control system[J]. High Power Laser and Particle Beams, 2018, 30: 025002. doi: 10.11884/HPLPB201830.170134

基于实验物理及工业控制系统的数控电源原理

doi: 10.11884/HPLPB201830.170134
基金项目: 

国家磁约束核聚变能发展研究专项 2010GB108003

详细信息
    作者简介:

    段吟池(1991—), 女,硕士,从事脉冲功率技术研究; dycdyc@mail.ustc.edu.cn

  • 中图分类号: TM464

Digital power supplies based on experimental physics and industrial control system

  • 摘要: 设计了一个基于实验物理及工业控制系统(EPICS)实时测控的伺服电源控制器,并将其插入现有脉冲电源测试。该电源控制器采用死区时间调制(DTM)技术伺服跟踪外部控制信号以连续调节所需输出电流,这可确保开关管工作在近似零电流关断的状态下, 开关损耗小,电源效率高。对该电源及其控制器原理进行了介绍,对DTM法进行了理论分析与研究,并通过Matlab仿真和实验验证了其原理的正确性和可行性。
  • 图  1  电源结构

    Figure  1.  Structure of power supply

    图  2  负载电流示意图

    Figure  2.  Waveform of load current

    图  3  外环反馈控制逻辑图

    Figure  3.  Logic flow of outer-loop feedback control

    图  4  DTM控制器结构

    Figure  4.  Structure of DTM controller

    图  5  闭环系统控制框图

    Figure  5.  Figure of closed-loop control

    图  6  串联谐振内环电流波形图

    Figure  6.  Inner-loop current waveform

    图  7  仿真模型

    Figure  7.  Simulation model

    图  8  稳态电流平均值随死区时间变化关系图

    Figure  8.  Mean value of steady-state load current based on simulation

    图  9  触摸屏界面

    Figure  9.  Interface of touch screen

    图  10  负载电流波形

    Figure  10.  Load current waveform

    表  1  电源变压器参数

    Table  1.   Parameters of power supply transformer

    Lδ/μH Lm/ mH Ct /nF L0/μH
    6.18 1.597 6.25 0.1
    下载: 导出CSV
  • [1] Li Ge. The inductance of compressed plasma[J]. Nuclear Fusion, 2015, 55: 033009. doi: 10.1088/0029-5515/55/3/033009
    [2] Li Ge. High-gain high-field fusion plasma[J]. Scientific Reports, 2015, 5: 015790.
    [3] 刘勇, 何湘宁, 张仲超. 脉冲密度调制串联谐振型塑料薄膜表面处理电源的研制[J]. 中国电机工程学报, 2005, 25(16): 158-162. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200516030.htm

    Liu Yong, He Xiangning, Zhang Zhongchao. Design of pulse density modulated series resonant inverter for plastic film surface treater. Proceedings of the CSEE, 2005, 25(16): 158-162 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDC200516030.htm
    [4] Vicente E, Esteban S-K, José J, et al. Improving the efficiency of IGBT series-resonant inverters using pulse density modulation[J]. IEEE Trans Industrial Electronics, 2011, 58(3): 979-987. doi: 10.1109/TIE.2010.2049706
    [5] Kolar J W, Zach F C, Casanellas F. Losses in PWM inverters using IGBTs[J]. IEE Proceedings-Electric Power Applications, 1995, 142(4): 285-288.
    [6] Li Ge, Zhou Yingui, Wang Haitian, et al. Compact power supplies for Tokamak heating[J]. IEEE Trans Dielectrics and Electrical Insulation, 2012, 19(1): 233-238. doi: 10.1109/TDEI.2012.6148523
    [7] 李格, 曹亮, 等. 电除尘器用高频高压脉冲数控电源[J]. 高电压技术, 2009, 35(7): 1695-1699.

    Geng Tao, Li Ge, Cao Liang, et al. Digital high-frequency high-voltage pulse power supply for electrostatic precipitators. 2005, 35(7): 1695-1699
    [8] 苏建仓, 王利民, 丁永忠, 等. 串联谐振充电电源分析及设计[J]. 强激光与粒子束, 2004, 16(12): 1611-1614. http://www.hplpb.com.cn/article/id/547

    Su Jiancang, Wang Limin, Ding Yongzhong, et al. Analysis and design of series resonant charging power supply. High Power Laser and Particle Beams, 2004, 16(12): 1611-1614 http://www.hplpb.com.cn/article/id/547
    [9] 尚雷, 王相綦, 裴元吉, 等. 新型软开关高压脉冲电容恒流充电技术分析[J]. 强激光与粒子束, 2001, 13(2): 241-244. http://www.hplpb.com.cn/article/id/1562

    Shang Lei, Wang Xiangqi, Pei Yuanji, et al. Analysis of new soft switch high-voltage pulse constant current capacitor charging. High Power Laser and Particle Beams, 2001, 13(2): 241-244 http://www.hplpb.com.cn/article/id/1562
    [10] 潘泽跃, 程健, 陈园园. 基于FPGA的脉冲电源及其控制系统设计[J]. 强激光与粒子束, 2015, 27: 095004. doi: 10.11884/HPLPB201527.095004

    Pan Zeyue, Cheng Jian, Chen Yuanyuan. Design of pulse power supply and control system based on FPGA. High Power Laser and Particle Beams, 27: 095004 doi: 10.11884/HPLPB201527.095004
    [11] Liyu A, Blokland W, Thompson D. Labview library to epics channel access[C]//Proceedings of the 2005 Particle Accelerator Conference. 2005: 3233-3234.
    [12] 何诗英, 黄连生, 高格, 等. 实验物理和工业控制系统在极向场控制系统中的应用[J]. 强激光与粒子束, 2017, 29: 026001. doi: 10.11884/HPLPB201729.160436

    He Shiyin, Huang Liansheng, Gao Ge, et al. Application of experimental physics and industrial control system in poloidal field power supply control system. High Power Laser and Particle Beams, 2017, 29: 026001 doi: 10.11884/HPLPB201729.160436
    [13] Kutkut N H, Divan D M, Novotny D W, et al. Design considerations and topology selection for a 120-kW IGBT converter for EV fast charging[J]. IEEE Trans Power Electronics, 1998, 13(1): 169-178.
    [14] Slemon G R. Magnetoelectric devices: Transducers, transformers and machines[M]. New York: John Wiley and Sons, 1966: 185.
    [15] Qu Xiaohui, Jing Yanyan, Han Hongdou, et al. Higher order compensation for inductive-power-transfer converters with constant-voltage or constant-current output combating transformer parameter constraints[J]. IEEE Trans Power Electronics, 2017, 32(1): 394-405.
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  1341
  • HTML全文浏览量:  250
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-04-21
  • 修回日期:  2017-06-27
  • 刊出日期:  2018-02-15

目录

    /

    返回文章
    返回