留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒光丝阵列对10 GHz电磁波的吸收特性

孙中浩 董超 张亚春 何湘 倪晓武 骆晓森

孙中浩, 董超, 张亚春, 等. 飞秒光丝阵列对10 GHz电磁波的吸收特性[J]. 强激光与粒子束, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301
引用本文: 孙中浩, 董超, 张亚春, 等. 飞秒光丝阵列对10 GHz电磁波的吸收特性[J]. 强激光与粒子束, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301
Sun Zhonghao, Dong Chao, Zhang Yachun, et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301
Citation: Sun Zhonghao, Dong Chao, Zhang Yachun, et al. Absorption of 10 GHz electromagnetic waves by femtosecond filaments array[J]. High Power Laser and Particle Beams, 2018, 30: 053201. doi: 10.11884/HPLPB201830.170301

飞秒光丝阵列对10 GHz电磁波的吸收特性

doi: 10.11884/HPLPB201830.170301
基金项目: 

国家自然科学基金项目 51107033

详细信息
    作者简介:

    孙中浩(1992—),男,硕士研究生,现主要从事激光等离子体与电磁波相互作用的研究; 18251950632@163.com

    通讯作者:

    骆晓森(1959—),男,博士,教授,从事激光物理方面的研究; nlglxs@163.com

  • 中图分类号: TN011;O437

Absorption of 10 GHz electromagnetic waves by femtosecond filaments array

  • 摘要: 为了研究飞秒光丝阵列对10 GHz电磁波的吸收特性,建立了飞秒光丝阵列吸收电磁波的有限元模型,研究了光丝内电子温度、电子数密度、光丝直径和电磁波的极化等参数对吸收系数的影响。研究结果表明:当电磁波偏振方向与光丝轴向垂直时,阵列对电磁波是透明的;增加光丝内电子数密度或提高电子温度,吸收系数先增大后减小;当光丝直径与电磁波趋肤深度相等时,吸收系数达到最大值。对于S极化电磁波,当光丝直径为50 μm时,吸收系数随入射角的增大而变大;当光丝直径为100~200 μm时,在入射角较小时,吸收系数随入射角的增大而变大;在入射角较大时会出现吸收峰值,最高可达0.45,且光丝直径越大,吸收峰值对应的入射角就越小;对于P极化电磁波,吸收系数随入射角增大而降低。
  • 图  1  飞秒光丝阵列与电磁波相互作用的几何示意图

    Figure  1.  Geometry used to describe the interaction of the incident microwave with the array made of cylindrical plasma filaments

    图  2  数值计算中电磁波的极化情况

    Figure  2.  Polarization of incident electromagnetic wave in numerical calculation

    图  3  电子数密度和电子温度对10 GHz电磁波的反射、透射和吸收系数的影响

    Figure  3.  Influence of the temperature and density of electrons on the transmission, reflection and absorption of electromagnetic wave

    图  4  光丝附近的能流密度

    Figure  4.  Power flow density of filament

    图  5  铜丝附近的能流密度

    Figure  5.  Power flow density of copper wire

    图  6  光丝直径及入射角对电磁波吸收的影响

    Figure  6.  Influence of the diameter of the filament and the incidence angle on the absorption of electromagnetic waves

  • [1] Rodriguez M, Bourayou R, Méjean G, et al. Kilometer-range nonlinear propagation of femtosecond laser pulses[J]. Physical Review E, 2004, 69: 036607. doi: 10.1103/PhysRevE.69.036607
    [2] Schillinger H, Sauerbrey R. Electrical conductivity of long plasma channels in air generated by self-guided femtosecond laser pulses[J]. Applied Physics B, 1999, 68(4): 753-756. doi: 10.1007/s003400050699
    [3] 王海涛, 范承玉, 沈红, 等. 飞秒光丝中等离子体密度时间演化特征[J]. 强激光与粒子束, 2012, 24(5): 1024-1028. doi: 10.3788/HPLPB20122405.1024

    Wang Haitao, Fan Chengyu, Shen Hong, et al. Temporal evolution of plasma density in femtosecond light filaments. High Power Laser and Particle Beams, 2012, 24(5): 1024-1028 doi: 10.3788/HPLPB20122405.1024
    [4] Courvoisier F, Boutou V, Kasparian J, et al. Ultraintense light filaments transmitted through clouds[J]. Applied Physics Letters, 2003, 83(2): 213-215. doi: 10.1063/1.1592615
    [5] Méchain G, Méjean G, Ackermann R, et al. Propagation of fs TW laser filaments in adverse atmospheric conditions[J]. Applied Physics B, 2005, 80(7): 785-789. doi: 10.1007/s00340-005-1825-2
    [6] Silaeva E P, Kandidov V P. Propagation of a high-power femtosecond pulse filament through a layer of aerosol[J]. Atmospheric and Oceanic Optics, 2009, 22(1): 26-34. doi: 10.1134/S1024856009010059
    [7] 高慧. 超快激光光丝阵列产生机理研究[D]. 天津: 南开大学, 2013.

    Gao Hui. Ultrafast laser filament array generation. Tianjin: Nankai University, 2013
    [8] Musin R R, Shneider M N, Zheltikov A M, et al. Guiding radar signals by arrays of laser-induced filaments: Finite-difference analysis[J]. Applied Optics, 2007, 46(23): 5593-5597. doi: 10.1364/AO.46.005593
    [9] Chateauneuf M, Payeur S, Dubois J, et al. Microwave guiding in air by a cylindrical filament array waveguide[J]. Applied Physics Letters, 2008, 92: 091104. doi: 10.1063/1.2889501
    [10] Shneider M N, Zheltikov A M, Miles R B. Long-lived laser-induced microwave plasma guides in the atmosphere: self-consistent plasma-dynamic analysis and numerical simulations[J]. Journal of Applied Physics, 2010, 108: 033113. doi: 10.1063/1.3457150
    [11] Marian A, Morsli M E, Vidal F, et al. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air[J]. Physics of Plasmas, 2013, 20: 023301. doi: 10.1063/1.4792160
    [12] Alshershby M, Hao Z, Camino A, et al. Modeling a femtosecond filament array waveguide for guiding pulsed infrared laser radiation[J]. Optics Communications, 2013, 296: 87-94. doi: 10.1016/j.optcom.2012.12.067
    [13] Camino A, Xi T, Hao Z, et al. Femtosecond filament array generated in air[J]. Applied Physics B, 2015, 121(3): 363-368. doi: 10.1007/s00340-015-6238-2
    [14] Bogatskaya A V, Popov A M, Smetanin I V. Amplification and guiding of microwave radiation in a plasma channel created by an ultrashort high-intensity laser pulse in noble gases[J]. Journal of Russian Laser Research, 2014, 35(5): 437-446. doi: 10.1007/s10946-014-9445-0
    [15] Bogatskaya A V, Hou B, Popov A M, et al. Nonequilibrium laser plasma of noble gases: Prospects for amplification and guiding of the microwave radiation[J]. Physics of Plasmas, 2016, 23: 374001.
    [16] Kartashov D, Shneider M N. Femtosecond filament initiated, microwave heated cavity-free nitrogen laser in air[J]. Journal of Applied Physics, 2017, 121: 113303. doi: 10.1063/1.4978745
    [17] Prade B, Houard A, Larour J, et al. Transfer of microwave energy along a filament plasma column in air[J]. Applied Physics B, 2017, 123(1): 40. doi: 10.1007/s00340-016-6616-4
    [18] 吴莹. 激光等离子体的微波干扰和诊断研究[D]. 南京: 南京理工大学, 2009.

    Wu Ying. Studies on microwave interference and microwave measure of laser-induced plasma. Nanjing: Nanjing University of Science and Technology, 2009
    [19] 弗朗西斯·F·陈. 等离子体物理学导论[M]. 北京: 科学出版社, 2016.

    Chen F F. Introduction to plasma physics. Beijing: Science Press, 2016
    [20] Huba J D. NRL (Naval Research Laboratory) plasma formulary, revised[R]. NRL/PU/6790-16-614, 2016.
    [21] 张亚春, 何湘, 沈中华, 等. 进气道内衬筒形等离子体隐身性能三维模拟[J]. 强激光与粒子束, 2015, 27: 052005. doi: 10.11884/HPLPB201527.052005

    Zhang Yachun, He Xiang, Shen Zhonghua, et al. Three-dimensional simulation of plasma stealth for cylindrical inlet. High Power Laser and Particle Beams, 2015, 27: 052005 doi: 10.11884/HPLPB201527.052005
    [22] 庄钊文, 袁乃昌, 刘少斌, 等. 等离子体隐身技术[M]. 北京: 科学出版社, 2005.

    Zhuang Zhaowen, Yuan Naichang, Liu Shaobin, et al. Plasma Stealth Technology. Beijing: Science Press, 2005
  • 加载中
图(6)
计量
  • 文章访问数:  1143
  • HTML全文浏览量:  218
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-29
  • 修回日期:  2017-12-01
  • 刊出日期:  2018-05-15

目录

    /

    返回文章
    返回