留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二维弹塑性磁流体力学数值模拟

阚明先 王刚华 肖波 段书超 杨龙

阚明先, 王刚华, 肖波, 等. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306
引用本文: 阚明先, 王刚华, 肖波, 等. 二维弹塑性磁流体力学数值模拟[J]. 强激光与粒子束, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306
Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elastoplastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306
Citation: Kan Mingxian, Wang Ganghua, Xiao Bo, et al. Two dimensional elastoplastic MHD numerical simulation[J]. High Power Laser and Particle Beams, 2018, 30: 065002. doi: 10.11884/HPLPB201830.170306

二维弹塑性磁流体力学数值模拟

doi: 10.11884/HPLPB201830.170306
基金项目: 

国家自然科学基金项目 11405167

国家自然科学基金项目 11571293

国家自然科学基金项目 11672276

中国工程物理研究院技术发展基金项目 2015B0201023

详细信息
    作者简介:

    阚明先(1971—),男,副研究员,研究方向为磁流体力学数值模拟; kanmx@caep.cn

  • 中图分类号: O361.3

Two dimensional elastoplastic MHD numerical simulation

  • 摘要: 为了研究物质弹塑性对磁驱动实验运动过程、不稳定性发展等的影响,在MDSC2程序的基础上,增加了弹塑性模块,研制了包括弹塑性的磁流体力学程序,并进行了弹塑性项影响的数值模拟和分析。数值模拟表明:没有初始扰动时,弹塑性项几乎不影响套筒内外半径的运动轨迹;有初始扰动时,弹塑性项对磁驱动固体套筒的Rayleigh-Tayor不稳定性有明显的抑制作用。
  • 图  1  模拟80 ns时飞片的速度分布图

    Figure  1.  Velocity distribution of flyer plate at 80 ns

    图  2  固体套筒内外半径变化图

    Figure  2.  Histories of inner and outer radius of liner

    图  3  没有弹塑性的扰动发展图

    Figure  3.  Diagrams of perturbation development without elastoplaticity

    图  4  有弹塑性的扰动发展图

    Figure  4.  Diagrams of perturbation development with elastoplaticity

  • [1] Matzen M K, Sweeney M A, Adams R G, et al. Pulsed-power-driven high energy density physics and inertial confinement fusion research[J]. Phys Plasmas, 2005, 12: 055503. doi: 10.1063/1.1891746
    [2] Knudson M D, Hanson D L, Bailey J E, et al. Equation of state measurements in liquid deuterium to 70 GPa[J]. Phys Rev Lett, 2001, 87: 225501. doi: 10.1103/PhysRevLett.87.225501
    [3] Lemke R W, Knudson M D, Hall C A, et al. Characterization of magnetically accelerated flyer plates[J]. Phys Plasmas, 2003, 10(4): 1092-1099. doi: 10.1063/1.1554740
    [4] Lemke R W, Knudson M D, Robinson A C, et al. Self-consistent, two-dimensional, magneto-hydrodynamic simulations of magnetically driven flyer plates[J]. Phys Plasmas, 2003, 10(5): 1867-1874. doi: 10.1063/1.1557530
    [5] Lemke R W, Knudson M D, Bliss D E, et al. Magnetically accelerated, ultrahigh velocity flyer plates for shock wave experiments[J]. J Appl Phys, 2005, 98: 073530. doi: 10.1063/1.2084316
    [6] Lemke R W, Knudson M D, Davis J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator[J]. International Journal of Impact Engineering, 2011, 38(6): 480-485. doi: 10.1016/j.ijimpeng.2010.10.019
    [7] Davis J P, Brown J L, Knudson M D, et al. Analysis of shockless dynamic compression data on solids to multi-megabar pressures: Application to tantalum[J]. J Appl Phys, 2014, 116: 204903. doi: 10.1063/1.4902863
    [8] Knudson M D, Lemke R W, Hayes D B, et al. Near-absolute Hugoniot measurements in aluminum to 500 GPa using a magnetically accelerated flyer plate technique[J]. J Appl Phys, 2003, 94(7): 4420-4431. doi: 10.1063/1.1604967
    [9] Knudson M D, Hanson D L, Bailey J E, et al. Use of a wave reverberation technique to infer the density compression of shocked liquid deuterium to 75 GPa[J]. Phys Rev Lett, 2003, 90: 035505. doi: 10.1103/PhysRevLett.90.035505
    [10] Knudson M D, Hanson D L, Bailey J E, et al. Principal Hugoniot, reverberating wave, and mechanical reshock measurements of liquid deuterium to 400 GPa using plate impact techniques[J]. Phys Rev B, 2004, 69: 144209. doi: 10.1103/PhysRevB.69.144209
    [11] Frese M H. MACH2: A two-dimensional magneto-hydrodynamic simulation code for complex experimental configurations[R]. AMRC-R-874, 1987.
    [12] Robinson A C, Brunner T A, Carroll S, et al. ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code[C]//46th AIAA Areospace Sciences Meeting and Exhibit. 2008.
    [13] Chittenden J P, Lebedev S V, Jennings C A, et al. X-ray generation mechanisms in three-dimensional simulations of wire array Z-pinches[J]. Plasma Phys Control Fusion, 2004, 46: B457-B476. doi: 10.1088/0741-3335/46/12B/039
    [14] Weinwurm M, Bland S N, Chittenden J P. Metal liner-driven cylindrically convergent isentropic compression of cryogenic deuterium[J]. Journal of Physics, 2014, 500: 082002.
    [15] 丁宁, 邬吉明, 杨震华, 等. Z箍缩内爆MRAED程序1维模拟分析[J]. 强激光与粒子束, 2008, 20(2): 212-218. http://www.hplpb.com.cn/article/id/3023

    Ding Ning, Wu Jiming, Yang Zhenghua, et al. Simulation of Z-pinch implosion using MARED code. High Power Laser and Particle Beams, 2008, 20(2): 212-218 http://www.hplpb.com.cn/article/id/3023
    [16] 阚明先, 蒋吉昊, 王刚华, 等. 套筒内爆ALE方法二维MHD数值模拟[J]. 四川大学学报, 2007, 44(1): 91-96. https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200701019.htm

    Kan Mingxian, Jiang Jihao, Wang Ganghua, et al. ALE simulation 2D MHD for liner. Journal of Sichuan University, 2007, 44(1): 91-96 https://www.cnki.com.cn/Article/CJFDTOTAL-SCDX200701019.htm
    [17] 阚明先, 王刚华, 赵海龙, 等. 磁驱动飞片二维磁流体力学数值模拟[J]. 强激光与粒子束, 2013, 25(8): 2137-2141. doi: 10.3788/HPLPB20132508.2137

    Kan Mingxian, Wang Ganghua, Zhao Hailong, et al. Two dimensional magneto-hydrodynamic simulations of magnetically accelerated flyer plates. High Power Laser and Particle Beams, 2013, 25(8): 2137-2141 doi: 10.3788/HPLPB20132508.2137
    [18] 段书超, 王刚华, 谢卫平, 等. FOI-PERFECT程序对电磁驱动高能量密度系统的三维弛豫磁流体力学模拟[J]. 强激光与粒子束, 2016, 28: 045014. doi: 10.11884/HPLPB201628.125014

    Duan Shuchao, Wang Ganghua, Xie Weiping, et al. 3D relaxation MHD modeling with FOI-PERFECT code for electromagnetically driven HED systems. High Power Laser and Particle Beams, 2016, 28: 045014 doi: 10.11884/HPLPB201628.125014
    [19] Ding Ning, Zhang Yang, Xiao Delong, et al. Theoretical and numerical research of wire array Z-pinch and dynamic hohlraum at IAPCM[J]. Matter and Radiation at Extremes, 2016, 1(3): 135-152. doi: 10.1016/j.mre.2016.06.001
    [20] 阚明先, 张朝辉, 段书超, 等. "聚龙一号"装置上磁驱动铝飞片实验的数值模拟[J]. 强激光与粒子束, 2015, 27: 125001. doi: 10.11884/HPLPB201527.125001

    Kan Mingxian, Zhang Zhaohui, Duan Shuchao, et al. Numerical simulation of magnetically driven aluminum flyer plate on PTS accelerator. High Power Laser and Particle Beams, 2015, 27: 125001 doi: 10.11884/HPLPB201527.125001
    [21] 阚明先, 段书超, 王刚华, 等. 自由面被烧蚀飞片的数值模拟[J]. 强激光与粒子束, 2017, 29: 045003. doi: 10.11884/HPLPB201729.160482

    Kan Mingxian, Duan Shuchao, Wang Ganghua, et al. Numerical simulation of magnetically driven flyer plate of ablated free surface. High Power Laser and Particle Beams, 2017, 29: 045003 doi: 10.11884/HPLPB201729.160482
    [22] 杨龙, 王刚华, 阚明先, 等. 基于MDSC程序的Z箍缩内爆单温和三温模拟分析[J]. 高压物理学报, 2016, 30(1): 64-70. https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201601011.htm

    Yang Long, Wang Ganghua, Kan Mingxian, et al. A numerical simulation analysis of mono-temperature and tri-temperature models by MDSC program in Z-pinch implosion. Chinese Journal of High Pressure Physics, 2016, 30(1): 64-70 https://www.cnki.com.cn/Article/CJFDTOTAL-GYWL201601011.htm
    [23] Steinberg D J, Cochran S G, Guinan M W. A constitutive model for metals applicable at high-strain rate[J]. J Appl Phys, 1980, 51(3): 1498-1504. doi: 10.1063/1.327799
    [24] Yao Songlin, Pei Xiaoyang, Yu Jidong, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum[J]. J Appl Phys, 2017, 121: 035101. doi: 10.1063/1.4974055
    [25] 杨礼兵, 孙承纬, 廖海东, 等. 高能密度物理实验装置FP-1及其应用[J]. 强激光与粒子束, 2002, 14(5): 767-770. http://www.hplpb.com.cn/article/id/1404

    Yang Libing, Sun Chengwei, Liao Haidong, et al. High energy density physics facility FP-1 and its applications. High Power Laser and Particle Beams, 2002, 14(5): 767-770 http://www.hplpb.com.cn/article/id/1404
  • 加载中
图(4)
计量
  • 文章访问数:  1209
  • HTML全文浏览量:  284
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-07
  • 修回日期:  2018-01-18
  • 刊出日期:  2018-06-15

目录

    /

    返回文章
    返回