留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于JMCT和FLUENT的物理-热工耦合计算

黄欢 黄洪文 郭海兵

黄欢, 黄洪文, 郭海兵. 基于JMCT和FLUENT的物理-热工耦合计算[J]. 强激光与粒子束, 2018, 30: 106002. doi: 10.11884/HPLPB201830.180012
引用本文: 黄欢, 黄洪文, 郭海兵. 基于JMCT和FLUENT的物理-热工耦合计算[J]. 强激光与粒子束, 2018, 30: 106002. doi: 10.11884/HPLPB201830.180012
Huang Huan, Huang Hongwen, Guo Haibing. Coupled neutronics and thermal-hydraulics based on JMCT and FLUENT[J]. High Power Laser and Particle Beams, 2018, 30: 106002. doi: 10.11884/HPLPB201830.180012
Citation: Huang Huan, Huang Hongwen, Guo Haibing. Coupled neutronics and thermal-hydraulics based on JMCT and FLUENT[J]. High Power Laser and Particle Beams, 2018, 30: 106002. doi: 10.11884/HPLPB201830.180012

基于JMCT和FLUENT的物理-热工耦合计算

doi: 10.11884/HPLPB201830.180012
基金项目: 

国家自然科学基金项目 11405155

国家磁约束核聚变能发展研究专项 2015GB108001

详细信息
    作者简介:

    黄欢(1992-), 男,硕士,从事反应堆物理-热工耦合研究;Huanhuang0413@126.com

    通讯作者:

    黄洪文(1975-),男,博士,从事反应堆热工水力相关研究;hhw@caep.cn

  • 中图分类号: TL364.4

Coupled neutronics and thermal-hydraulics based on JMCT and FLUENT

  • 摘要: 基于蒙特卡罗程序JMCT2.2和商用CFD程序FLUENT,通过C++语言,采用外耦合的方式开发了一套耦合接口程序。利用JMCT网格和FLUENT计算域之间一一映射的方式完成物理模型和CFD模型之间的网格匹配,实现了物理模型的简单划分和CFD模型网格的精细划分。利用该耦合程序计算了压水堆单根燃料棒模型和3×3带水洞的燃料子组件模型,并与MCNP与FLUENT耦合计算结果进行对比。计算结果表明,使用本文的方法,耦合JMCT程序与FLUENT程序能够用于物理-热工耦合计算并准确提供其反馈参数。
  • 图  1  JF_COUP程序求解过程

    Figure  1.  JF_COUP solver processes

    图  2  单棒模型

    Figure  2.  PWR cell model

    图  3  单棒模型收敛情况

    Figure  3.  Convergence behavior of PWR cell model

    图  4  单棒模型功率对比

    Figure  4.  Comparison of power distribution of PWR cell model

    图  5  各区域功率分布饼图

    Figure  5.  Pie chart of power distribution

    图  6  单棒模型温度对比

    Figure  6.  Comparison of temperature distribution of PWR cell model

    图  7  压水堆3×3组件模型

    Figure  7.  PWR 3×3 model for JMCT and FLUENT calculations

    图  8  压水堆3×3组件模型收敛情况

    Figure  8.  Convergence behavior of PWR 3×3 model

    图  9  压水堆3×3组件模型功率对比

    Figure  9.  Comparison of power distribution of PWR 3×3 model

    图  10  压水堆3×3组件模型温度对比

    Figure  10.  Comparison of temperature distribution of PWR 3×3 model

    表  1  JMCT与MCNP单棒模型耦合对比结果

    Table  1.   Comparison of the single cell model coupling calculations

    converged keff maximum power density/(MW·m-3) maximum cell temperature of fuel/K maximum cell temperature of moderator/K average temperature rise of coolant/K
    MCNP 0.654 27 411.961 1 398.25 581.06 11.12
    JMCT 0.651 71 398.100 1 407.97 581.29 11.08
    下载: 导出CSV

    表  2  3×3模型对比结果

    Table  2.   Comparison of the 3×3 cell model coupling calculations

    converged keff maximum power density/ (MW·m-3) maximum cell temperature of fuel/K maximum cell temperature of moderator/K average temperature rise of coolant/K
    MCNP 1.416 93 158.515 892.21 598.12 46.51
    JMCT 1.417 20 160.334 896.21 598.24 46.58
    下载: 导出CSV
  • [1] Ivanov K, Avramova M. Challenges in coupled thermal-hydraulics and neutronics simulations for LWR safety analysis[J]. Annals of Nuclear Energy, 2007, 34(6): 501-513. doi: 10.1016/j.anucene.2007.02.016
    [2] Chaudri K S, Su Y, Chen R, et al. Development of sub-channel code SACoS and its application in coupled neutronics/thermal hydraulics system for SCWR[J]. Annals of Nuclear Energy, 2012, 45: 37-45. https://www.sciencedirect.com/science/article/pii/S0306454912000606
    [3] Ragusa J C, Mahadevan V S. Consistent and accurate schemes for coupled neutronics thermal-hydraulics reactor analysis[J]. Nuclear Engineering & Design, 2009, 239(3): 566-579. https://www.sciencedirect.com/science/article/pii/S0029549308005645
    [4] Jareteg K, Vinai P, Demazière C. Fine-mesh deterministic modeling of PWR fuel assemblies: Proof-of-principle of coupled neutronic/thermal-hydraulic calculations[J]. Annals of Nuclear Energy, 2014, 68(3): 247-256. https://www.sciencedirect.com/science/article/pii/S0306454914000036
    [5] Weber D P, Sofu T, Yang W S, et al. Coupled calculations using the numerical nuclear reactor for integrated simulation of neutronic and thermal-hydraulic phenomena[J]. EIRP Proceedings, 2004, 5(1): 13-16.
    [6] Jimenez G, Herrero J J, Gommlich A, et al. Boron dilution transient simulation analyses in a PWR with neutronics/thermal-hydraulics coupled codes in the NURISP project[J]. Annals of Nuclear Energy, 2014, 84: 86-97. https://www.sciencedirect.com/science/article/pii/S0306454914005829
    [7] 史敦福, 李康, 秦桂明, 等. 蒙卡中子输运程序JMCT和子通道热工水力程序COBRA-EN耦合计算[J]. 强激光与粒子束, 2017, 29: 036007. doi: 10.11884/HPLPB201729.160383

    Shi Dunfu, Li Kang, Qing Guiming, et al. Coupling of Monte-Carlo code JMCT and sub-channel thermal-hydraulics code COBRA-EN. High Power Laser and Particle Beams, 2017, 29: 036007 doi: 10.11884/HPLPB201729.160383
    [8] 李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162. doi: 10.3788/HPLPB20132501.0158

    Li Gang, Zhang Baoyin, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162 doi: 10.3788/HPLPB20132501.0158
    [9] Seker V, Thomas J W, Downar T J. Reactor physics simulations with coupled Monte Carlo calculation and computational fluid dynamics[C]//Joint International Topical Meeting on Mathematics & Computations and Supercomputing in Nuclear Applications (M&C+SNA 2007). 2007.
    [10] 刘余, 李峰, 张虹, 等. 三维物理-热工耦合系统RECON的开发与验证[J]. 原子能科学技术, 2012, 46(10): 1226-1231. https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201210016.htm

    Liu Yu, Li Feng, Zhong Hong, et al. Development and validation of three dimensional neutronics and thermal-hydraulics coupled system REON. Atomic Energy Science and Technology, 2012, 46(10): 1226-1231 https://www.cnki.com.cn/Article/CJFDTOTAL-YZJS201210016.htm
    [11] 黄欢, 黄洪文, 郭海兵. 三维物理-热工耦合过程的网格优化[J]. 强激光与粒子束, 2017, 29: 116002. doi: 10.11884/HPLPB201729.170168

    Huang Huan, Huang Hongwen, Guo Haibin. Grid optimizing of coupling neutronics and thermal-hydraulics based on Monte Carlo method and CFD method. High Power Laser and Particle Beams, 2017, 29: 116002 doi: 10.11884/HPLPB201729.170168
    [12] Vazquez M, Tsige-Tamirat H, Ammirabile L, et al. Coupled neutronics thermal-hydraulics analysis using Monte Carlo and sub-channel codes[J]. Nuclear Engineering & Design, 2012, 250(3): 403-411. https://www.sciencedirect.com/science/article/pii/S0029549312003251
    [13] Cardoni J N. Nuclear reactor multi-physics simulations with coupled MCNP5 and STAR-CCM+[D]. USA: University of Illinois, 2011.
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1270
  • HTML全文浏览量:  386
  • PDF下载量:  113
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-11
  • 修回日期:  2018-06-03
  • 刊出日期:  2018-10-15

目录

    /

    返回文章
    返回