留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

kW级功率驱动的锁相高功率微波发生器

江佩洁 张颜颜 谢鸿全 李正红

江佩洁, 张颜颜, 谢鸿全, 等. kW级功率驱动的锁相高功率微波发生器[J]. 强激光与粒子束, 2018, 30: 083006. doi: 10.11884/HPLPB201830.180036
引用本文: 江佩洁, 张颜颜, 谢鸿全, 等. kW级功率驱动的锁相高功率微波发生器[J]. 强激光与粒子束, 2018, 30: 083006. doi: 10.11884/HPLPB201830.180036
Jiang Peijie, Zhang Yanyan, Xie Hongquan, et al. Phase-locked high power microwave generator driven by kW level RF power[J]. High Power Laser and Particle Beams, 2018, 30: 083006. doi: 10.11884/HPLPB201830.180036
Citation: Jiang Peijie, Zhang Yanyan, Xie Hongquan, et al. Phase-locked high power microwave generator driven by kW level RF power[J]. High Power Laser and Particle Beams, 2018, 30: 083006. doi: 10.11884/HPLPB201830.180036

kW级功率驱动的锁相高功率微波发生器

doi: 10.11884/HPLPB201830.180036
基金项目: 

国家自然科学基金项目 61271109

详细信息
    作者简介:

    江佩洁(1994-), 女,硕士研究生,从事高功率微波器件方面的研究;jiangpeijie@yeah.net

    通讯作者:

    李正红(1968-), 男,研究员,从事高功率微波器件方面的研究;lzhaa_@163.com

  • 中图分类号: TN122

Phase-locked high power microwave generator driven by kW level RF power

  • 摘要: 针对kW级微波驱动的锁相GW高功率微波,设计了一个高增益(大于50 dB)四腔相对论速调管放大器(RKA)。模拟表明,在此条件下高次模振荡严重影响器件的锁相实现。由此,将RKA结构与正反馈振荡电路结合起来,建立相应的等效电路来研究这种高次模激励的物理过程(即高次模的激励与中间腔之间耦合强度的相关性)。在高次模振荡的等效电路(即正反馈振荡电路)中,用衰减电阻代替结构中的微波吸收层来研究高次模振荡的抑制机理,衰减电阻通过对反馈过程的控制,提高了电路的自激振荡起振电流。在结构上按照衰减电阻要求设计了微波吸收层,将高次模振荡的起振电流提高到大于器件的工作电流,实现了高增益(约60 dB)条件下高次模激励的抑制。模拟获得了4 kW微波功率驱动的2.3 GW锁相高功率微波,增益接近60 dB。在LTD加速器平台的实验结果表明:注入微波由固态RF种子源提供(功率10 kW),输出功率达到1.8 GW,增益为52.6 dB,90 ns内输入和输出微波的相对相位差小于±10°,实验上实现了kW级注入微波对GW高功率微波的相位锁定。
  • 图  1  高增益RKA结构示意图

    Figure  1.  Schematic of the high gain RKA structure

    图  2  RKA输出功率和相对相位差

    Figure  2.  Output power and relative phase difference of RKA

    图  3  RKA谐振腔耦合作用等效电路

    Figure  3.  Equivalent circuit of the coupling between resonant cavities of RKA

    图  4  正反馈回路

    Figure  4.  Positive feedback circuits

    图  5  不同耦合强度下第二个腔的响应电压

    Figure  5.  Voltage of the 2nd cavity with different coupling strengths

    图  6  加载吸波材料的RKA模拟输出功率及包络仿真曲线

    Figure  6.  Simulation output power and envelop curve of the RKA with RF lossy material

    图  7  输入和输出微波波形

    Figure  7.  Waveforms of input and output microwaves

    图  8  相对相位差曲线

    Figure  8.  Relative phase difference vesus time

    表  1  吸波材料电导率与腔间耦合强度关系

    Table  1.   Relationship between conductance of lossy material and coupled strength

    conductivity/(S·m-1) coupled strength Ist/(kA)
    0.3 0.108 6
    0.5 0.054 11
    0.7 0.079 7
    0.9 0.098 /
    下载: 导出CSV
  • [1] 周传明, 刘国治, 刘永贵, 等. 高功率微波源[M]. 北京: 原子能出版社, 2007: 34-45.

    Zhou Chuanming, Liu Guozhi, Liu Yonggui, et al. High-power microwave sources. Beijing: Atomic Energy Press, 2007: 34-45
    [2] 袁欢, 刘振邦, 黄华, 等. 强流脉冲驱动的X波段多注相对论速调管相位特性[J]. 强激光与粒子束, 2017, 29: 093005. doi: 10.11884/HPLPB201729.170131

    Yuan Huan, Liu Zhenbang, Huang Hua, et al. Phase characteristics of X-band multiple beams relativistic klystron driven by intense pulse electron beams. High Power Laser and Particle Beams, 2017, 29: 093005 doi: 10.11884/HPLPB201729.170131
    [3] Wu Yang, Xie Hongquan, Li Zhenghong, et al. Gigawatt peak power generation in a relativistic klystron amplifier driven by 1 kW seed-power[J]. Physics of Plasmas, 2013, 20: 113102. doi: 10.1063/1.4828975
    [4] Li Zhenghong. Experimental study of a low radio frequency power driven relativistic klystron amplifier[J]. Physics of Plasmas, 2010, 17: 023113.
    [5] Song Wei, Liu Guozhi, Lin Yuzheng, et al. Simulation of a relativistic klystron with strong input power[J]. IEEE Trans Plasma Science, 2008, 36: 682-687. doi: 10.1109/TPS.2008.923749
    [6] 陈永东, 谢鸿全, 李正红, 等. 电子回流对相对论速调管稳定工作的影响[J]. 强激光与粒子束, 2013, 25(7): 1770-1773. doi: 10.3788/HPLPB20132507.1770

    Chen Yongdong, Xie Hongquan, Li Zhenghong, et al. Effect of returning electrons on stability of relativistic klystron amplifier. High Power Laser and Particle Beams, 2013, 25(7): 1770-1773 doi: 10.3788/HPLPB20132507.1770
    [7] Liu Yinghui, Niu Xinjian, Jia Nan, et al. A study on the high-order mode oscillation in a four-cavity intense relativistic klystron amplifier[J]. Physics of Plasmas, 2016, 23: 072110.
    [8] 吴洋, 李正红, 谢鸿全, 等. 衰减材料对高增益相对论速调管自激振荡的抑制[J]. 强激光与粒子束, 2014, 26: 063043. doi: 10.11884/HPLPB201426.063043

    Wu Yang, Li Zhenghong, Xie Hongquan, et al. Suppression of self-oscillation in high gain relativistic klystron amplifier by RF lossy material. High Power Laser and Particle Beam, 2014, 26: 063043 doi: 10.11884/HPLPB201426.063043
    [9] Zhang Zehai. Experimental study on parasitic mode suppression using FeSiAl in relativistic klystron amplifier[J]. Review of Scientific Instruments, 2015, 86: 034707. doi: 10.1063/1.4914832
    [10] Wu Yang, Xu Zhou, Jin Xiao, et al. A long pulse relativistic klystron amplifier driven by low RF power[J]. IEEE Trans Plasma Science, 2012, 40(10): 2762-2766.
    [11] 张泽海, 舒挺, 张军, 等. S波段相对论速调管锁相特性[J]. 强激光与粒子束, 2013, 25(8): 2040-2044. doi: 10.3788/HPLPB20132508.2040

    Zhang Zehai, Shu Ting, Zhang Jun, et al. Phase-locking property of S-band RKA. High Power Laser and Particle Beams, 2013, 25(8): 2040-2044 doi: 10.3788/HPLPB20132508.2040
    [12] 袁欢, 黄华, 何琥, 等. S波段相对论速调管放大器相位稳定性的优化设计及实验研究[J]. 强激光与粒子束, 2017, 29: 113001. doi: 10.11884/HPLPB201729.170133

    Yuan Huan, Huang Hua, He Hu, et al. Optimization and experimental study of phase characteristics of S-band relativistic klystron amplifier. High Power Laser and Particle Beams, 2017, 29: 113001 doi: 10.11884/HPLPB201729.170133
    [13] 成会, 谢鸿全, 李正红, 等. S波段四腔相对论速调管放大器的整管性能[J]. 强激光与粒子束, 2013, 25(8): 2050-2054. doi: 10.3788/HPLPB20132508.2050

    Cheng Hui, Xie Hongquan, Li Zhenghong, et al. Performance of S band four-cavity relativistic klystron amplifier. High Power Laser and Particle Beams, 2013, 25(8): 2050-2054 doi: 10.3788/HPLPB20132508.2050
    [14] 张泽海, 舒挺, 张军, 等. 相对论速调管放大器杂模振荡的抑制[J]. 强激光与粒子速, 2011, 23(11): 2989-2993. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222076.htm

    Zhang Zehai, Shu Ting, Zhang Jun, et al. Suppression of parasitic mode oscillation in relativistic klystron amplifier. High Power Laser and Particle Beams, 2011, 23(11): 2989-2993 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201222076.htm
    [15] 康华光, 陈大钦, 张林. 电子技术基础[M]. 5版. 北京: 高等教育出版社, 2006: 156-160.

    Kang Huaguang, Chen Daqin, Zhang Lin. Fundamentals of electronic technology. 5th ed. Beijing: Higher Education Press, 2006: 156-160
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1179
  • HTML全文浏览量:  224
  • PDF下载量:  133
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-25
  • 修回日期:  2018-04-17
  • 刊出日期:  2018-08-15

目录

    /

    返回文章
    返回