留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

宽气压范围空气中微波击穿电场的计算公式

刘婉 翁明 殷明 徐伟军 王芳 曹猛

刘婉, 翁明, 殷明, 等. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30: 113001. doi: 10.11884/HPLPB201830.180086
引用本文: 刘婉, 翁明, 殷明, 等. 宽气压范围空气中微波击穿电场的计算公式[J]. 强激光与粒子束, 2018, 30: 113001. doi: 10.11884/HPLPB201830.180086
Liu Wan, Weng Ming, Yin Ming, et al. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30: 113001. doi: 10.11884/HPLPB201830.180086
Citation: Liu Wan, Weng Ming, Yin Ming, et al. Formula of microwave breakdown electric field calculation within wide pressure range in air[J]. High Power Laser and Particle Beams, 2018, 30: 113001. doi: 10.11884/HPLPB201830.180086

宽气压范围空气中微波击穿电场的计算公式

doi: 10.11884/HPLPB201830.180086
基金项目: 

国家自然科学基金项目 U1537210

国家自然科学基金项目 11375139

详细信息
    作者简介:

    刘婉(1993-), 女, 硕士, 从事物理电子学研究; liuwan4869@stu.xjtu.edu.cn

    通讯作者:

    翁明(1964-), 男, 副教授, 从事物理电子学研究; wengming@xjtu.edu.cn

  • 中图分类号: TN13

Formula of microwave breakdown electric field calculation within wide pressure range in air

  • 摘要: 为了简便快捷地计算微波击穿电场,依据电子扩散模型的基本理论,结合气体放电的基本参量,应用特征扩散长度的概念,给出了适合于规则结构微波部件的击穿电场的计算方法。为避免各种气体参数的不确定性对计算准确度的影响,对等效直流电场与特征扩散长度之间的实验关系进行了拟合,并根据等效直流电场的定义,得出了一个适用于较高气压范围的击穿电场计算表达式。为了将该计算表达式扩展到更低的气压范围,综合考虑了电子扩散模型和基于二次电子发射现象的真空微放电机理,引入了一个合理形式的等效扩散长度,进一步给出了适合于更广气压范围的微波击穿电场的计算表达式,计算结果更符合A.D.Macdonald的实验结果。
  • 图  1  空气中Eeff/pΛp的实验关系及其拟合结果

    Figure  1.  Fitting result and relationship between Eeff/p and Λp from experiment in air

    图  2  不同参数下微波击穿电场的计算结果

    Figure  2.  Results of microwave breakdown electric field under different parameters

    图  3  频率为3.13 GHz时空气中的微波击穿场强(A D Macdonald, 1966)

    Figure  3.  Continuous-wave breakdown fields in air at f=3.13 GHz(A D Macdonald, 1966)

    图  4  式(24)得到的计算结果

    Figure  4.  Calculation results of formula (24)

    表  1  由实验值计算得到的参数h的对应值

    Table  1.   Parameter h calculated by experiment value

    f/GHz Λ/cm p/torr Erms/(V·cm-1) h/(torr·cm)
    3.13 0.02 0.16 1574 0.025
    3.13 0.02 0.24 1472 0.026
    3.13 0.05 0.16 1467 0.023
    3.13 0.05 0.20 1328 0.025
    3.13 0.101 0.12 1290 0.025
    3.13 0.101 0.16 1213 0.024
    下载: 导出CSV

    表  2  不同公式计算微波击穿电场与实验值之间的平均相对误差

    Table  2.   The average relative error between calculations by different formulas of microwave breakdown electric field recorded by A D Macdonald (1966) experiment values

    f/GHz Λ/cm Dleft13/% Dleft24/% Dright13/% Dright13/%
    0.994 1.51 14.3 11.9 3.10 3.17
    0.994 2.56 6.07 6.36 9.87 9.92
    9.4 0.22 9.13 5.52 3.44 3.35
    下载: 导出CSV
  • [1] Yu Ming. Power-handling capability for RF filters[J]. IEEE Microwave Magazine, 2007, 8(5): 88-97. doi: 10.1109/MMM.2007.904712
    [2] 杨耿, 谭吉春, 盛定仪, 等. 波导等离子体限幅器中气体的选择与触发条件计算[J]. 强激光与粒子束, 2008, 20(3): 439-442. http://www.hplpb.com.cn/article/id/3257

    Yang Geng, Tan Jichun, Sheng Dingyi, et al. Gas selection and calculation of its breakdown field for plasma waveguide limiter. High Power Laser and Particle Beams, 2008, 20(3): 439-442 http://www.hplpb.com.cn/article/id/3257
    [3] 刘静月, 黄文华, 方进勇, 等. 高功率微波大气击穿的光学诊断[J]. 强激光与粒子束, 2000, 12(3): 327-330. http://www.hplpb.com.cn/article/id/1455

    Liu Jingyue, Huang Wenhua, Fang Jinyong, et al. Optical diagnosis of high power microwave air breakdown. High Power Laser and Particle Beams, 2000, 12(3): 327-330 http://www.hplpb.com.cn/article/id/1455
    [4] 陈雅深, 董志伟, 赵强, 等. 高功率微波大气传输电离过程的物理研究[J]. 强激光与粒子束, 2006, 18(1): 119-123. http://www.hplpb.com.cn/article/id/2442

    Chen Yashen, Dong Zhiwei, Zhao Qiang, et al. Physical research on ionization of high power microwave propagating in atmosphere. High Power Laser and Particle Beams, 2006, 18(1): 119-123 http://www.hplpb.com.cn/article/id/2442
    [5] 杨建宏, 牛忠霞, 周东方, 等. 大气击穿对高功率微波天线的影响[J]. 强激光与粒子束, 2005, 17(8): 1223-1227. http://www.hplpb.com.cn/article/id/186

    Yang Jianhong, Niu Zhongxia, Zhou Dongfang, et al. Effect of air breakdown on high power microwave antenna. High Power Laser and Particle Beams, 2005, 17(8): 1223-1227 http://www.hplpb.com.cn/article/id/186
    [6] Pinheiro-Ortega T, Monge J, Marini S, et al. Microwave corona breakdown prediction in arbitrarily-shaped waveguide based filters[J]. IEEE Microwave & Wireless Components Letters, 2010, 20(4): 214-216.
    [7] 徐学基, 诸定昌. 气体放电物理[M]. 上海: 复旦大学出版社, 1996.

    Xu Xueji, Zhu Dingchang. Physics of gas discharge. Shanghai: Fudan University Press, 1996
    [8] Herlin M A, Brown S C. Electrical breakdown of a gas between coaxial cylinders at microwave frequencies[J]. Phys Rev, 1948, 74(8): 910-913. doi: 10.1103/PhysRev.74.910
    [9] Herlin M A, Brown S C. Breakdown of a gas at microwave frequencies[J]. Phys Rev, 1948, 74(3): 291-296. doi: 10.1103/PhysRev.74.291
    [10] Macdonald A D. Microwave breakdown in gases[M]. New York: John Wiley & Sons, Inc., 1966.
    [11] Anderson D, Jordon U, Lisak M, et al. Microwave breakdown in resonators and filters[J]. IEEE Trans Microwave Theory & Techniques, 1999, 47(12): 2547-2556.
    [12] Tomala R, Jordan U, Anderson D, et al. Microwave breakdown of the TE11 mode in a circular waveguide[J]. Journal of Physics D Applied Physics, 2005, 38(14): 2378-2381.
    [13] Rasch J, Anderson D, Lisak M, et al. Microwave corona breakdown in a gas-filled rectangular resonator cavity[J]. Journal of Physics D Applied Physics, 2009, 42: 055210.
    [14] Chung T H, Lin M, Hyun J Y, et al. Two-dimensional fluid simulation of capacitively coupled RF electronegative plasmas[J]. Japanese Journal of Applied Physics, 1997, 36(5A): 2874-2882.
    [15] 翁明, 王瑞, 崔万照. 空气中微波击穿电场的计算[J]. 真空科学与技术学报, 2013, 33(6): 598-604. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306018.htm

    Weng Ming, Wang Rui, Cui Wanzhao. Simulation of microwave breakdown electric field in air. Chinese Journal of Vacuum Science and Technology, 2013, 33(6): 598-604 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKKX201306018.htm
    [16] 翁明, 王瑞, 崔万照. 高频气体击穿与真空击穿之间的联系[J]. 空间电子技术, 2014(1): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ201401004.htm

    Weng Ming, Wang Rui, Cui Wanzhao. The relation between the high-frequency gas breakdown and the vacuum breakdown. Space Electric Technology, 2014(1): 6-10 https://www.cnki.com.cn/Article/CJFDTOTAL-KJDZ201401004.htm
    [17] 翁明, 王瑞, 崔万照. 采用等效特征扩散长度计算微波击穿电场[J]. 西安交通大学学报, 2013, 47(4): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201304000.htm

    Weng Ming, Wang Rui, Cui Wanzhao. Calculation of microwave breakdown electric field use the equivalent characteristic diffusion length. Journal of Xi'an Jiaotong University, 2013, 47(4): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201304000.htm
    [18] Jordan U, Anderson D, Lapierre L, et al. On the effective diffusion length for microwave breakdown[J]. IEEE Trans Plasma Science, 2006, 34(2): 421-430.
    [19] Herlin M A, Brown S C. Breakdown of a gas at microwave frequencies[J]. Phys Rev, 1948, 74(3): 291-296.
    [20] Macdonald A D, Gaskell D U, Gitterman H N. Microwave breakdown in air, oxygen, and nitrogen[J]. Phys Rev, 1963, 130(5): 1841-1850.
    [21] Sorolla E, Mattes M. Corona discharge in microwave devices: A comparison of ionization rate models[J]. IEEE Microwave Review, 2010, 16(1): 41-46.
  • 加载中
图(4) / 表(2)
计量
  • 文章访问数:  1461
  • HTML全文浏览量:  323
  • PDF下载量:  114
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-23
  • 修回日期:  2018-07-23
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回