留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强激光锥型靶真空电子加速数值模拟研究

王思明 周维民 杨祖华 贺书凯 谷渝秋 曹磊峰

王思明, 周维民, 杨祖华, 等. 强激光锥型靶真空电子加速数值模拟研究[J]. 强激光与粒子束, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099
引用本文: 王思明, 周维民, 杨祖华, 等. 强激光锥型靶真空电子加速数值模拟研究[J]. 强激光与粒子束, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099
Wang Siming, Zhou Weimin, Yang Zuhua, et al. Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target[J]. High Power Laser and Particle Beams, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099
Citation: Wang Siming, Zhou Weimin, Yang Zuhua, et al. Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target[J]. High Power Laser and Particle Beams, 2018, 30: 092002. doi: 10.11884/HPLPB201830.180099

强激光锥型靶真空电子加速数值模拟研究

doi: 10.11884/HPLPB201830.180099
基金项目: 

国家自然科学基金项目 11775202

国家自然科学基金项目 11405141

详细信息
    作者简介:

    王思明(1992—),男,硕士,研究方向为强场物理;952033034@qq.com

    通讯作者:

    周维民(1978—),男,研究员,研究方向为高能量密度物理;zhouwm@caep.cn

  • 中图分类号: O434.12

Numerical simulation of vacuum electron acceleration by interaction of intense laser with conical target

  • 摘要: 真空激光加速机制具有加速场梯度大、加速电子电量高的优点,目前制约真空加速机制研究发展的主要问题是如何产生具有一定初速度的电子并将其注入加速场。提出了一种利用强激光与锥型靶相互作用产生高能电子并实现真空加速的新方法,利用二维PIC(Particle-in-cell)粒子模拟程序对这一方法进行了研究。模拟结果显示,对于光强为1021 W/cm2量级的高斯激光脉冲,产生了能量为GeV量级、发散角约为1°的强流快电子束。此外还通过理论解析和参数模拟研究了靶半径对这种超热电子加速机制的影响。
  • 图  1  模型示意图

    Figure  1.  Set up of the simulation

    图  2  高斯激光在真空、平面间隙靶与锥形靶中位于y=8 μm处的纵向激光电场分布

    Figure  2.  Spatial distribution of longitudinal electric field at y=8 μm in vacuum, gap target and cone target

    图  3  t=160 fs时刻,电子密度分布

    Figure  3.  Spatial distribution of the electron density at t=160 fs

    图  4  纵向激光电场与激光相速度横向分布图

    Figure  4.  Longitudinal electric field and transverse distribuition of phase velocity

    图  5  粒子追踪(a) 轨迹和动能,(b) 横向和纵向动量

    Figure  5.  Particle tracing (a) trajectory and kinetic energy, (b)transverse momentum(py) and longitudinal momentum(px)

    图  6  t=2.72 ps时刻电子能谱和角分布

    Figure  6.  Energy spectrum and angular distribution of electrons at t=2.72 ps

  • [1] Sheng Z M, Weng S M, Yu L L, et al. Absorption of ultrashort intense lasers in laser-solid interactions[J]. Chinese Phys B, 2015, 24: 015201. doi: 10.1088/1674-1056/24/1/015201
    [2] Wilks S C, Langdon A B, Cowan T E, et al. Energetic proton generation in ultra-intense laser-solid interactions[J]. Phys Plasmas, 2001, 8: 542-549. doi: 10.1063/1.1333697
    [3] 周维民, 谷渝秋, 丁永坤, 等. 超短超强激光与Cu靶相互作用中质子背向发射的实验测量[J]. 强激光与粒子束, 2004, 16(11): 1406-1408. http://www.hplpb.com.cn/article/id/421

    Zhou Weimin, Gu Yuqiu, Ding Yongkun, et al. Measurement of proton jet in the interaction of ultra-short ultra-intense laser with Cu foil target. High Power Laser and Particle Beams, 2004, 16(11): 1406-1408 http://www.hplpb.com.cn/article/id/421
    [4] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [5] 谷渝秋, 张锋, 单连强, 等. 神光Ⅱ升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27: 110101. doi: 10.11884/HPLPB201527.110101

    Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang Ⅱ-updated facility. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
    [6] Tajima T, Dawson J M. Laser electron accelerator[J]. Phys Rev Lett, 1979, 43(4): 267-270. doi: 10.1103/PhysRevLett.43.267
    [7] Woodward P M. A method of calculating the field over a plane aperture required to produce a given polar diagram[J]. J Inst Electr Eng, 1947, 93(10): 1554-1558.
    [8] Esarey E, Sprangle P, Krall J. Laser acceleration of electrons in vacuum[J]. Phys Rev E, 1995, 52(5): 5443-5453. doi: 10.1103/PhysRevE.52.5443
    [9] Wang P X, Ho Y K, Yuan X Q, et al. Vacuum electron acceleration by an intense laser[J]. Appl Phys Lett, 2001, 78(15): 2253-2255. doi: 10.1063/1.1359486
    [10] Wang P X, Ho Y K, Yuan X Q, et al. Characteristics of laser-driven electron acceleration in vacuum[J]. Appl Phys Lett, 2002, 91(2): 856-866.
    [11] Pang J, Ho Y K, Yuan X Q, et al. Subluminous phase velocity of a focused laser beam and vacuum laser acceleration[J]. Phys Rev E, 2002, 66: 066501.
    [12] Thevenet M, Leblanc A, Kahaly S, et al. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors[J]. Nat Phys, 2016, 12: 355-361. doi: 10.1038/nphys3597
    [13] Xiao K D, Huang T W, Ju L B, et al. Energetic electron-bunch generation in a phase-locked longitudinal laser electric field[J]. Phys Rev E, 2016, 93: 043207. doi: 10.1103/PhysRevE.93.043207
    [14] Zhang Z M, He X T, Sheng Z M, et al. Hundreds MeV monoenergetic proton bunch from interaction of 1020-21 W/cm2 circularly polarized laser pulse with tailored complex target[J]. Appl Phys Lett, 2012, 100: 134103. doi: 10.1063/1.3696885
  • 加载中
图(6)
计量
  • 文章访问数:  933
  • HTML全文浏览量:  235
  • PDF下载量:  183
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-04-04
  • 修回日期:  2018-06-21
  • 刊出日期:  2018-09-15

目录

    /

    返回文章
    返回