留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化学增透膜激光疲劳损伤效应

蒋勇 贾奎 邱荣 廖威 晏良宏 王毕艺 官上洪 郭德成 周强 袁晓东

蒋勇, 贾奎, 邱荣, 等. 化学增透膜激光疲劳损伤效应[J]. 强激光与粒子束, 2018, 30: 102001. doi: 10.11884/HPLPB201830.180150
引用本文: 蒋勇, 贾奎, 邱荣, 等. 化学增透膜激光疲劳损伤效应[J]. 强激光与粒子束, 2018, 30: 102001. doi: 10.11884/HPLPB201830.180150
Jiang Yong, Jia Kui, Qiu Rong, et al. Laser fatigue damage effect on chemical antireflection film[J]. High Power Laser and Particle Beams, 2018, 30: 102001. doi: 10.11884/HPLPB201830.180150
Citation: Jiang Yong, Jia Kui, Qiu Rong, et al. Laser fatigue damage effect on chemical antireflection film[J]. High Power Laser and Particle Beams, 2018, 30: 102001. doi: 10.11884/HPLPB201830.180150

化学增透膜激光疲劳损伤效应

doi: 10.11884/HPLPB201830.180150
基金项目: 

四川省大学生创新创业训练资助项目 17CXCY64

国家自然科学基金项目 61505170

国家自然科学基金项目 61775235

国家自然科学基金项目 61705205

国家自然科学基金项目 U1530109

国家自然科学基金项目 61505171

西南科技大学龙山人才计划资助项目 17LZX669

西南科技大学龙山人才计划资助项目 18LZX516

详细信息
    作者简介:

    蒋勇(1982-),男,博士,副教授,从事强激光与物质相互作用的理论与实验方面的研究工作; y_jiang@swust.edu.cn

  • 中图分类号: O439

Laser fatigue damage effect on chemical antireflection film

  • 摘要: 疲劳效应是诱导高功率固体激光装置中光学元件激光损伤的因素之一,目前对SiO2化学增透膜激光诱导疲劳损伤的研究鲜见报道。基于此,本文采用单一激光能量多发次辐照和多梯度激光能量多发次辐照两种不同的激光辐照方式,研究1064 nm化学增透膜层的激光疲劳损伤效应及特征。研究结果表明,在单一激光能量多发次脉冲激光辐照下,膜层最易发生疲劳损伤; 采用多梯度激光能量多发次辐照的方式,可以有效地提升膜层的损伤阈值,进而提升膜层的抗激光疲劳损伤性能。
  • 图  1  损伤测试光路图

    Figure  1.  Schematic of damage test system

    图  2  熔石英基底损伤形貌

    Figure  2.  Damage morphology of fused silica substrate

    图  3  膜层/基底损伤光学显微图

    Figure  3.  Optical microscopic images of film/substrate damage

    表  1  样品基底和膜层S-on-1和1-on-1测试结果

    Table  1.   Laser-induced damage thresholds(LIDTs) of substrate and film by S-on-1 and 1-on-1 tests

    S-on-1 LIDT/(J/cm2) 1-on-1 LIDT/(J/cm2)
    0% 50% 100% 0% 50% 100%
    substrate 4.81 6.2 7.58 4.48 5.91 7.33
    film 4.32 5.28 6.25 4.41 5.45 6.49
    下载: 导出CSV

    表  2  方式一疲劳损伤测试结果

    Table  2.   Fatigue damage test results by Mode A

    substrate film
    No. fluence/ (J/cm2) number of shots No. fluence/ (J/cm2) number of shots
    P1 4.7 500 P1 4.54 500
    P2 5.38 500 P2 4.89 500
    P3 5.56 500 P3 5.15 500
    P4 5.76 7 P4 5.32 154
    P5 6.02 5 P5 5.46 4
    下载: 导出CSV

    表  3  方式二疲劳损伤测试结果

    Table  3.   Fatigue damage test results by mode B

    substrate film
    No. fluence/ (J/cm2) number of shots No. fluence/ (J/cm2) number of shots
    P1 5.25 500 P1 5.05 500
    6.01 77 6.07 53
    P2 4.94 500 P2 5.33 500
    5.56 500 5.76 500
    6.35 141 6.26 274
    P3 4.76 500 P3 4.56 500
    5.66 500 5.10 500
    6.25 500 5.90 500
    6.99 371 6.69 37
    下载: 导出CSV
  • [1] Sglavo V M, Green D J. Fatigue limit in fused silica[J]. Journal of the European Ceramic Society, 2001, 21: 561-567. doi: 10.1016/S0955-2219(00)00241-7
    [2] Gallais L, Natoli J Y, Amra C. Statistical study of single and multiple pulse laser-induced damage in glasses[J]. Optics Express, 2002, 10(25): 1465-1474. doi: 10.1364/OE.10.001465
    [3] Gouldieff C, Wagner F, Natoli J Y. Nanosecond UV laser-induced fatigue effects in the bulk of synthetic fused silica: A multi-parameter study[J]. Optics Express, 2015, 23(3): 2962-2972. doi: 10.1364/OE.23.002962
    [4] Wagner F R, Duchateau G, Natoli J Y, et al. Catastrophic nanosecond laser induced damage in the bulk of potassium titanyl phosphate crystals[J]. J Appl Phys, 2014, 115: 243102. doi: 10.1063/1.4885435
    [5] Wagner F R, Hildenbrand A, Akhouayri H, et al. Multipulse laser damage in potassium titanyl phosphate: statistical interpretation of measurements and the damage initiation mechanism[J]. Opt Eng, 2012, 51: 121806. doi: 10.1117/1.OE.51.12.121806
    [6] Ling X. Nanosecond multi-pulse damage investigation of optical coatings in atmosphere and vacuum environments[J]. Appl Surf Sci, 2011, 257(13): 5601-5604. doi: 10.1016/j.apsusc.2011.01.053
    [7] Liu Wenwen, Wei Chaoyang, Wu Jianbo, et al. Investigations on single and multiple pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 1064 nm[J]. Optics Express, 2013, 21(19): 22476-22487. doi: 10.1364/OE.21.022476
    [8] Pfiffer M, Cormont P, Fargin E, et al. Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm[J]. Optics Express, 2017, 25(5): 4607-4620. doi: 10.1364/OE.25.004607
    [9] Doualle T, Gallais L, Monneret S, et al. CO2 laser microprocessing for laser damage growth mitigation of fused silica optics[J]. Optical Engineering, 2017, 56: 011022.
    [10] Gouldieffa C, Wagner F R, Natoli J Y. Study of laser-induced fatigue effects in synthetic fused silica in the UV[C]//Proc of SPIE. 2014, 9237: 923725.
    [11] Douti D B, Gallais L, Commandré M. Laser-induced damage of optical thin films submitted to 343, 515, and 1030 nm multiple subpicosecond pulses[J]. Optical Engineering, 2014, 53: 122509. doi: 10.1117/1.OE.53.12.122509
    [12] Natoli J Y, Capouladea J, Bertussia B, et al. Need to define a functional LIDT in multiple irradiation cases: Examples of silica and KDP at 1064 nm and 355 nm[C]//Proc of SPIE. 2005, 5991: 599109.
    [13] Liu Wenwen, Wei Chaoyang, Yi Kui, et al. Multiscale analysis of single-and multiple-pulse laser-induced damages in HfO2/SiO2 multilayer dielectric films at 532 nm[J]. Chinese Optics Letters, 2015, 13: 091404. doi: 10.3788/COL201513.091404
    [14] Frank R W, Gouldieff C, Natoli J Y, et al. Nanosecond multi-pulse laser-induced damage mechanisms in pure and mixed oxide thin films[J]. Thin Solid Films, 2015, 592: 225-231. doi: 10.1016/j.tsf.2015.04.014
    [15] Genin F Y, Rubenchik A M, Burnham A K, et al. Thin film contamination effects on laser-induced damage of fused silica surface at 355 nm[C]//Proc of SPIE. 1998, 3492: 212-218.
    [16] Hu Guohang, Zhao Yuanan, Shao Jianda, et al. Real-time damage event imaging reveals the absorber inducing laser damage with low density in solgel antireflective coatings[J]. Journal of the Optical Society of America, 2013, 30(5): 1186-1193. doi: 10.1364/JOSAB.30.001186
    [17] 苗心向, 袁晓东, 吕海兵, 等. 高功率激光装置光传输管道污染规律及对光学表面损伤性能的影响[J]. 强激光与粒子束, 2015, 27: 032033. doi: 10.11884/HPLPB201527.032033

    Miao Xinxiang, Yuan Xiaodong, Lü Haibing, et al. Contamination in beampath and laser induced damge of optics in high power laser system. High Power Laser and Particle Beams, 2015, 27: 032033 doi: 10.11884/HPLPB201527.032033
    [18] 刘杰, 张伟丽, 朱美萍, 532 nm HfO2/SiO2高反膜的激光预处理效应[J]. 强激光与粒子束, 2015, 27: 032034 doi: 10.11884/HPLPB201527.032034

    Liu Jie, Zhang Weili, Zhu Meiping. Laser conditioning effect of HfO2/SiO2 high reflectors at 532 nm. High Power Laser and Particle Beams, 2015, 27: 032034 doi: 10.11884/HPLPB201527.032034
    [19] Liu Xiaofeng, Zhao Yuan'an, Li Dawei, et al. Characteristics of plasma scalds in multilayer dielectric films[J]. Applied Optics, 2011, 50(21): 4226-4231. doi: 10.1364/AO.50.004226
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1106
  • HTML全文浏览量:  268
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-29
  • 修回日期:  2018-07-02
  • 刊出日期:  2018-10-15

目录

    /

    返回文章
    返回