留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稠密等离子体焦点装置研制

李名加 范娟 章法强 王文川 梁川 郭洪生 杨军

李名加, 范娟, 章法强, 等. 稠密等离子体焦点装置研制[J]. 强激光与粒子束, 2018, 30: 115002. doi: 10.11884/HPLPB201830.180230
引用本文: 李名加, 范娟, 章法强, 等. 稠密等离子体焦点装置研制[J]. 强激光与粒子束, 2018, 30: 115002. doi: 10.11884/HPLPB201830.180230
Li Mingjia, Fan Juan, Zhang Faqiang, et al. Development of dense plasma focus device[J]. High Power Laser and Particle Beams, 2018, 30: 115002. doi: 10.11884/HPLPB201830.180230
Citation: Li Mingjia, Fan Juan, Zhang Faqiang, et al. Development of dense plasma focus device[J]. High Power Laser and Particle Beams, 2018, 30: 115002. doi: 10.11884/HPLPB201830.180230

稠密等离子体焦点装置研制

doi: 10.11884/HPLPB201830.180230
基金项目: 

中国工程物理研究院发展基金项目 2014B0103005

中国工程物理研究院中子物理学重点实验室基金项目 2015BB01

详细信息
    作者简介:

    李名加(1977—),男,副研究员,博士,从事脉冲功率技术研究; caeplmj@163.com

    通讯作者:

    梁川(1977—),男,副研究员,硕士,从事脉冲功率技术研究; lcjxm@sina.com

  • 中图分类号: TN752.5;TL51

Development of dense plasma focus device

  • 摘要: 研制了一台用作脉冲中子源的稠密等离子体焦点装置(DPF),其放电室为Mather型结构。介绍了整个装置的工作原理及系统组成,详细论述了放电室的设计方法。实验结果表明,在550~600 Pa充氘压力范围下,当储能电容充电电压大于19 kV时,装置的平均中子产额大于5.0×108(D-D)中子/脉冲,中子脉冲宽度(FWHM)为(40±5) ns。该装置能用于中子、伽马辐射诊断中探测系统灵敏度实验研究,也可用于开展快中子照相、中子活化分析以及单粒子效应等方面的研究工作。
  • 图  1  DPF装置工作原理图

    Figure  1.  Principle of dense plasma focus(DPF) device

    图  2  稠密等离子体焦点装置系统组成框图

    Figure  2.  Structure diagram of DPF device

    图  3  放电室实物图

    Figure  3.  Photo of DPF chamber

    图  4  模拟结果

    Figure  4.  Simulation results

    图  5  典型实验波形

    Figure  5.  Typical experimental waveforms

  • [1] Mather J W. Methods of experimental physics[M]. New York: Academic Press, 1971: 187-190.
    [2] Gribkov V A, Latyshev S V, Miklaszewski R A, et al. A dense plasma focus-based neutron source for a single-shot detection of illicit materials and explosives by a nanosecond neutron pulse[J]. Phys Scr, 2010, 81: 035502. doi: 10.1088/0031-8949/81/03/035502
    [3] Lorenzo F D, Raspa V, Knoblauch P, et al. Hard X-rays source for flash radiography based on a 2.5 kJ plasma focus[J]. J Appl Phys, 2007, 102: 033304. doi: 10.1063/1.2767829
    [4] Tomar B S, Kaushik T C, Andola S, et al. Non-destructive assay of fissile materials through active neutron interrogation technique using pulsed neutron (plasma focus) device[J]. Nucl Instrum Methods Phys Res, Sect A, 2013, 703: 11-15. doi: 10.1016/j.nima.2012.11.027
    [5] Roshan M V, Springham S V, Rawat R S, et al. Short-lived PET radioisotope production in a small plasma focus device[J]. IEEE Trans Plasma Sci, 2010, 38(12): 3393-3397. doi: 10.1109/TPS.2010.2083699
    [6] Gribkov V A, Bienkowska B, Borowiecki M, et al. Plasma dynamics in PF-1000 under full-scale energy storage. I. Pinch dynamics, shock-wave diffraction and inertial electrode[J]. J Phys D: Appl Phys, 2007, 40: 1977. doi: 10.1088/0022-3727/40/7/021
    [7] Scholz M, Miklaszewski R A, Gribkov V A, et al. PF-1000 device[J]. Nukleonika, 2000, 45(3): 155-158.
    [8] Mathuthu M, Zengeni T G, Gholap A V. Design, fabrication, and characterization of a 2.3 kJ plasma focus of negative inner electrode[J]. Rev Sci Instrum, 1997, 68(3): 1429. doi: 10.1063/1.1148390
    [9] Freeman B L, Boydston J, Ferguson J, et al. Preliminary neutron scaling of the TAMU 460 kJ plasma focus[C]//Proceedings of the 27th IEEE International Conference on Pulsed Power Plasma Science. 2001.
    [10] Niranjan R, Rout R K, Mishra P, et al. Note: A portable pulsed neutron source based on the smallest sealed-type plasma focus device[J]. Rev Sci Instrum, 2011, 82: 026104. doi: 10.1063/1.3534827
    [11] Niranjan R, Rout R K, Srivastava R, et al. The smallest plasma accelerator device as a radiation safe repetitive pulsed neutron source[J]. Indian J Pure Appl Phys, 2012, 50: 785.
    [12] Mathuthu M, Zengeni T G, Gholap A V, et al. The three-phase theory for plasma focus devices[J]. IEEE Trans Plasma Science, 1997, 25(6): 1382-1388. doi: 10.1109/27.650907
    [13] Filippov N V, Filippova T I, Vinogradov V P. Dense, high temperature plasma in a non-cylindrical Z-pinch compression[J]. Nucl Fusion, 1962, 2: 577-587.
    [14] Mather J W. Formation of a high-density deuterium plasma focus[J]. Phys Fluids, 1965, 8(2): 366-377. doi: 10.1063/1.1761231
    [15] Saw S H, Lee S. Scaling the plasma focus for fusion energy considerations[J]. Int J Energy Res, 2011, 35: 81-88. doi: 10.1002/er.1758
  • 加载中
图(5)
计量
  • 文章访问数:  981
  • HTML全文浏览量:  167
  • PDF下载量:  106
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-03
  • 修回日期:  2018-10-08
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回