留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚龙一号装置磁驱动加载实验的全电路模拟

郭帆 王贵林 邹文康 陈林 谢卫平

郭帆, 王贵林, 邹文康, 等. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30: 125001. doi: 10.11884/HPLPB201830.180239
引用本文: 郭帆, 王贵林, 邹文康, 等. 聚龙一号装置磁驱动加载实验的全电路模拟[J]. 强激光与粒子束, 2018, 30: 125001. doi: 10.11884/HPLPB201830.180239
Guo Fan, Wang Guilin, Zou Wenkang, et al. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30: 125001. doi: 10.11884/HPLPB201830.180239
Citation: Guo Fan, Wang Guilin, Zou Wenkang, et al. Full circuit calculation of magnetically driven experiment on PTS facility[J]. High Power Laser and Particle Beams, 2018, 30: 125001. doi: 10.11884/HPLPB201830.180239

聚龙一号装置磁驱动加载实验的全电路模拟

doi: 10.11884/HPLPB201830.180239
基金项目: 

国家自然科学基金青年科学基金项目 11605181

详细信息
    作者简介:

    郭帆(1987—), 男, 博士研究生, 从事脉冲功率技术研究, 394560789@qq.com

  • 中图分类号: O411.3

Full circuit calculation of magnetically driven experiment on PTS facility

  • 摘要: 聚龙一号装置由24路模块并联组成, 通过调整24路模块中激光触发气体开关的导通时序可实现负载电流波形的精确调节, 以满足磁驱动加载实验所要求的负载电流波形灵活调节的需求。针对聚龙一号装置开展的磁驱动加载实验, 建立了能够描述能量从Marx发生器开始至负载整个传输过程的全电路模型, 开发了相应的电路计算程序, 并基于实验结果对计算程序进行了校验, 电路模拟结果与实验结果符合较好。电路模拟程序的计算效率比采用Pspice软件进行全电路计算的效率显著提高, 其不仅可应用于在给定激光触发气体开关导通时序的情况下对聚龙一号装置的输出特性进行预测和评估, 同时也为负载电流波形调节的方案设计提供了一种有效工具。
  • 图  1  聚龙一号装置结构示意图

    Figure  1.  Structureschematic ofthe PTS

    图  2  聚龙一号装置全电路模型

    Figure  2.  Fullcircuit model ofthe PTS

    图  3  聚龙一号装置单台Marx发生器等效电路模型

    Figure  3.  Circuit model ofthesingle Marxgeneratorinthe PTS

    图  4  电路模拟和实验测量所得0061发负载电流

    Figure  4.  Load current waveforms of shot 0061 acquired during the experiment and by circuit simulation

    图  5  电路模拟所得0061发实验四层外MITL末端传输线单元的工作电压和电流

    Figure  5.  Operating voltage and current waveforms of the transmission line elements at the end of four layers outer MITLs for shot 0061

    图  6  0061发实验四层外MITL末端传输线单元的临界磁绝缘电流

    Figure  6.  Minimum currents required to establish magnetical insulation for the transmission line elements at the end of four layers outer MITLs for shot 0061

    图  7  磁驱动加载实验方案设计流程

    Figure  7.  Process of obtaining the laser triggered gas switches closing time for the magnetically driven experiments

    图  8  0122发实验负载电流波形

    Figure  8.  Load current waveforms of shot 0122

    表  1  0061发实验负载参数

    Table  1.   Load parameters of shot 0061

    wa/cm w/cm he/cm δ/μm g/cm material ρ0/(g·cm-3)
    1.5 1.3 1.8 972 0.2 LY 12 aluminum 2.7
    下载: 导出CSV

    表  2  0061发实验激光触发气体开关的导通时间

    Table  2.   Closing time of the 24 laser triggered gas switches for shot 0061

    switch No. closing time/ns switch No. closing time/ns switch No. closing time/ns switch No. closing time/ns
    1# 886 7# 956 13# 886 19# 954
    2# 950 8# 1049 14# 943 20# 1050
    3# 1012 9# 956 15# 1017 21# 954
    4# 1050 10# 1049 16# 1050 22# 1050
    5# 1012 11# 886 17# 1017 23# 886
    6# 1050 12# 943 18# 1050 24# 950
    下载: 导出CSV

    表  3  0122发实验负载参数

    Table  3.   Load parameters for shot 0122

    wa/cm w/cm he/cm δ/μm g/cm material ρ0/(g·cm-3)
    0.9 0.8 2.8 1000 0.12 LY 12 aluminum 2.7
    下载: 导出CSV

    表  4  0122发实验激光触发气体开关的导通时序

    Table  4.   Closing time of the 24 laser triggered gas switches for shot 0122

    switch No. closing time/ns switch No. closing time/ns switch No. closing time/ns switch No. closing time/ns
    1# 770 7# 1055 13# 810 19# 1065
    2# 990 8# 1080 14# 990 20# 1080
    3# 1090 9# 1055 15# 1090 21# 1065
    4# 940 10# 1080 16# 860 22# 1080
    5# 1090 11# 810 17# 1090 23# 770
    6# 940 12# 990 18# 860 24# 990
    下载: 导出CSV
  • [1] Deng Jianjun, Xie Weiping, Feng Shuping, et al. From concept to reality-A review to the primary test stand and its preliminary application in high energy density physics[J]. Matter and Radiation at Extremes, 2016, 1(1): 48-58. doi: 10.1016/j.mre.2016.01.004
    [2] Reisman D B, Toor A, Cauble R C, et al. Magnetically driven isentropic compression experiments on the Z accelerator[J]. Journal of Applied Physics, 2001, 89(3): 1625-1633. doi: 10.1063/1.1337082
    [3] Davis J P, Deeney C, Knudson M D, et al. Magnetically driven isentropic compression to multimegabar pressures using shaped current pulses on the Z accelerator[J]. Physics of Plasmas, 2005, 12: 056310. doi: 10.1063/1.1871954
    [4] Hall C A. Isentropic compression experiments on the Sandia Z accelerator[J]. Physics of Plasmas, 2000, 7(5): 2069-2075. doi: 10.1063/1.874029
    [5] Xia Minghe, Li Fengping, Ji Ce, et al. Current pulse shaping of the load current on PTS[J]. AIP Advances, 2016, 6: 025319. doi: 10.1063/1.4942816
    [6] 夏明鹤, 李丰平, 计策, 等. 聚龙一号装置波形调节[J]. 强激光与粒子束, 2016, 28: 055003. doi: 10.11884/HPLPB201628.055003

    Xia Minghe, Li Fengping, Ji Ce, et al. Current pulse shaping of load on Primary Test Stand facility. High Power Laser and Particle Beams, 2016, 28: 055003) doi: 10.11884/HPLPB201628.055003
    [7] 邹文康, 郭帆, 王贵林, 等. 聚龙一号装置磁绝缘传输线的电流损失特性[J]. 高电压技术, 2015, 41(6): 1844-1851. https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201506010.htm

    Zou Wenkang, Guo Fan, Wang Guilin, et al. Current loss properties of the magnetically insulated transmission line in the PTS facility. High Voltage Engineering, 2015, 41(6): 1844-1851) https://www.cnki.com.cn/Article/CJFDTOTAL-GDYJ201506010.htm
    [8] Stygar W A, Corcoran P A, Ives H C, et al. 55-TW magnetically insulated transmission-line system: Design, simulations, and performance[J]. Physical Review Special Topics-Accelerators and Beams, 2009, 12: 120401. doi: 10.1103/PhysRevSTAB.12.120401
    [9] Bergeron K D. Equivalent circuit approach to long magnetically insulated transmission lines[J]. Journal of Applied Physics, 1977, 48(7): 3065-3069. doi: 10.1063/1.324075
    [10] Hutsel B T, Corcoran P A, Cuneo M E, et al. Transmission-line-circuit model of an 85-TW, 25-MA pulsed-power accelerator[J]. Physical Review Accelerators and Beams, 2018, 21: 030401. doi: 10.1103/PhysRevAccelBeams.21.030401
    [11] Weseloh W N. TLCODE-A transmission line code for pulsed power design[C]//Proceedings of 7th IEEE International Pulsed Power Conference. 1989: 989-992.
    [12] Spielman R B, Gryazin Y. Screamer: A optimized pulsed-power circuit-analysis tool[C]//Proceedings of IEEE Power Modulator and High Voltage Conference. 2016: 269-274.
    [13] Samokhin A A. High power electromagnetic wave in a magnetically insulated transmission line of the ANGARA-5-1 facility[J]. Plasma Physics Reports, 2010, 36(8): 682-698. doi: 10.1134/S1063780X10080052
    [14] Samokhin A A. Numerical investigation of the physical model of a high-power electromagnetic wave in a magnetically insulated transmission line[J]. Plasma Physics Reports, 2010, 36(2): 149-163. doi: 10.1134/S1063780X10020066
    [15] 薛创, 丁宁, 张扬, 等. 聚龙一号电磁脉冲形成与传输过程的全电路模拟[J]. 强激光与粒子束, 2016, 28: 015014. doi: 10.11884/HPLPB201628.015014

    Xue Chuang, Ding Ning, Zhang Yang, et al. Full circuit simulation for electromagnetic pulse forming and transmission in the PTS facility. High Power Laser and Particle Beams, 2016, 28: 015014) doi: 10.11884/HPLPB201628.015014
    [16] Hu Yixiang, Qiu Ai'ci, Huang Tao, et al. Experimental and simulation studies of a 1-m-long magnetically insulated transmission line with 2-cm anode-cathode gap[J]. IEEE Trans Plasma Science, 2012, 40(6): 1743-1748. doi: 10.1109/TPS.2012.2191983
    [17] Zou Wenkang, Guo Fan, Chen Lin, et al. Full circuit calculation for electromagnetic pulse transmission in a high current facility[J]. Physical Review Special Topics-Accelerators and Beams, 2014, 17: 110401. doi: 10.1103/PhysRevSTAB.17.110401
    [18] 宋盛义, 关永超, 顾元朝, 等. 初级试验平台磁绝缘传输线的电路模拟[J]. 强激光与粒子束, 2008, 20(5): 833-838. http://www.hplpb.com.cn/article/id/3548

    Song Shengyi, Guan Yongchao, Gu Yuanchao, et al. Circuit modeling for magnetically insulated transmission lines on primary test stand. High Power Laser and Particle Beams, 2008, 20(5): 833-838) http://www.hplpb.com.cn/article/id/3548
    [19] Guo Fan, Zou Wenkang, Gong Boyi, et al. Modeling power flow in the induction cavity with a two dimensional circuit simulation[J]. Physical Review Accelerators and Beams, 2017, 20: 020401. doi: 10.1103/PhysRevAccelBeams.20.020401
    [20] 何安, 丁瑜, 康军军, 等. "聚龙一号"装置24路模块精确控制技术[J]. 强激光与粒子束, 2018, 30: 035003. doi: 10.11884/HPLPB201830.170353

    He An, Ding Yu, Kang Junjun, et al. Accurate control technology of 24 modules in PTS. High Power Laser and Particle Beams, 2018, 30: 035003) doi: 10.11884/HPLPB201830.170353
    [21] Hinshelwood D D. BERTHA-a versatile transmission line and circuit code[R]. Naval Research Laboratory Memorandum Report No. 5185, 1983.
    [22] 邹文康, 关永超, 宋盛义, 等. 基于波过程的传输线模拟方法[J]. 强激光与粒子束, 2007, 19(9): 1571-1574. http://www.hplpb.com.cn/article/id/3463

    Zou Wenkang, Guan Yongchao, Song Shengyi, et al. Transmission line simulation method based on wave process. High Power Laser and Particle Beams, 2007, 19(9): 1571-1574) http://www.hplpb.com.cn/article/id/3463
    [23] 郭帆, 邹文康, 陈林. 一种磁绝缘传输线真空功率流的电路计算方法[J]. 强激光与粒子束, 2013, 25(7): 1845-1850. doi: 10.3788/HPLPB20132507.1845

    Guo Fan, Zou Wenkang, Chen Lin. A method for circuit simulation the vacuum power flow in magnetically insulated transmission line. High Power Laser and Particle Beams, 2013, 25(7): 1845-1850) doi: 10.3788/HPLPB20132507.1845
    [24] 王贵林, 郭帅, 沈兆武, 等. 基于聚龙一号装置的超高速飞片发射实验研究进展[J]. 物理学报, 2014, 63: 196201. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201419037.htm

    Wang Guilin, Guo Shuai, Shen Zhaowu, et al. Recent advances in hyper-velocity flyer launch experiments on PTS. Acta Physica Sinica, 2014, 63: 196201) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201419037.htm
    [25] 王贵林, 李军, 张朝辉, 等. "阳"加速器磁驱动平面飞片实验和速度计算校验[J]. 强激光与粒子束, 2014, 26: 015101. doi: 10.3788/HPLPB201426.015101

    Wang Guilin, Li Jun, Zhang Zhaohui, et al. Experiments and velocity validation of magnetically driven flyer plates on "Yang" accelerator. High Power Laser and Particle Beams, 2014, 26: 015101) doi: 10.3788/HPLPB201426.015101
    [26] 韩旻, 邹晓兵, 张贵新. 脉冲功率技术基础[M]. 北京: 清华大学出版社, 2010.

    Han Min, Zou Xiaobing, Zhang Guixin. Pulsed power technology. Beijing: Tsinghua University Press, 2010)
    [27] Ottinger P F, Schumer J W. Rescaling of equilibrium magnetically insulated flow theory based on results from particle-in-cell simulations[J]. Physics of Plasmas, 2006, 13: 063109.
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1398
  • HTML全文浏览量:  278
  • PDF下载量:  137
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-09-15
  • 修回日期:  2018-10-20
  • 刊出日期:  2018-12-15

目录

    /

    返回文章
    返回