留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生

邓志刚 贺书凯 崔波 滕建 张智猛

邓志刚, 贺书凯, 崔波, 等. 基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生[J]. 强激光与粒子束, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262
引用本文: 邓志刚, 贺书凯, 崔波, 等. 基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生[J]. 强激光与粒子束, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262
Deng Zhigang, He Shukai, Cui Bo, et al. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262
Citation: Deng Zhigang, He Shukai, Cui Bo, et al. Generation of high-quality electron beams based on tightly focused super-Gaussian laser[J]. High Power Laser and Particle Beams, 2018, 30: 111003. doi: 10.11884/HPLPB201830.180262

基于紧聚焦超高斯激光脉冲的大电量低发散度电子束产生

doi: 10.11884/HPLPB201830.180262
基金项目: 

国家自然科学基金青年基金项目 11605177

详细信息
    作者简介:

    邓志刚(1985-), 男, 博士, 主要从事激光尾场加速研究; dzgzju@163.com

  • 中图分类号: O521.3

Generation of high-quality electron beams based on tightly focused super-Gaussian laser

  • 摘要: 在激光尾场加速中,光学注入是一种有效的可控电子注入机制。然而,低电量、大发散度的电子束特性无法满足实际应用的需要。为获得大电量、高品质电子束提出采用紧聚焦的超高斯激光作为注入脉冲的新型注入方案。研究发现,相比于普通高斯激光,紧聚焦的超高斯激光不仅能够将电子束发散度降低近一个数量级,而且能够保持电子束电荷量不变。通过哈密顿理论模型证实,离轴电子是发散度的主要来源,而紧聚焦的超高斯激光极大地限制了离轴电子的注入,因此有效地降低了电子束的发散度。
  • 图  1  (a) 高斯型注入脉冲下的注入电子横向相空间分布。不同颜色代表注入电子初始横向位置与主激光光轴的距离Δr。(b)相应的电子束发散度和电荷量与离轴距离Δr的关系。作为对比,采用紧聚焦超高斯激光作为注入脉冲时捕获电子的相空间分布及电子束发散度随离轴距离Δr的变化如(c)和(d)所示

    Figure  1.  (a)transverse phase-space distribution of trapped electrons in Gaussian case. Noted that colors represent Δr. (b)the beam emittance and total charge versus Δr. As a reference, the results by adopting a tightly focused super-Gaussian laser as the injection pulse are shown in (c) and (d)

    图  2  纵向相空间分布和纵向加速电场(a) 高斯型注入脉冲(b)紧聚焦超高斯注入脉冲。(c)不同激光模式下的电子束能谱分布

    Figure  2.  Longitudinal phase-space distribution and the corresponding acceleration electric field Ex on the laser axis for (a) Gaussian case and (b) tightly focused super-Gaussian case. (c)the energy spectra for two cases

    图  3  不同初始横向位置的电子横向相空间动力学特性。(a)和(b)初始横向位置分别为y0=19 μm和y0=5 μm的电子的横向相空间轨迹。其中不同颜色代表不同的电子能量。(c)和(d)描述不同初始位置的电子的betatron振幅及发散角随时间的演化

    Figure  3.  (Color online). Transverse phase-space dynamics for electrons with different initial transverse position. (a) and (b) show transverse phase-space trajectories for two electrons with y0=19 μm and y0=5 μm respectively. The color represents the electron energy and the inset is the partial enlarged drawing. (c) and (d) show the evolution of the betatron amplitude y and the divergence py/px

  • [1] Esarey E, Schroeder C B, Leemans W P. Physics of laser-driven plasma-based electron accelerators[J]. Reviews of Modern Physics, 2009, 81: 1229-1285. doi: 10.1103/RevModPhys.81.1229
    [2] Leemans W P, Nagler B, Gonsalves A J, et al. GeV electron beams from a centimetre-scale accelerator[J]. Nature Physics, 2006, 2(10): 696-699. doi: 10.1038/nphys418
    [3] Hafz N A M, Jeong T M, Choi I W, et al. Stable generation of GeV-class electron beams from self-guided laser-plasma channels[J]. Nature Photonics, 2011, 2(9): 571-577.
    [4] Clayton C E, Ralph J E, Albert F, et al. Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection[J]. Physical Review Letters, 2010, 105: 105003. doi: 10.1103/PhysRevLett.105.105003
    [5] Kim H T, Pae K H, Cha H J, et al. Enhancement of electron energy to the multi-GeV regime by a dual-stage laser-wakefield accelerator pumped by petawatt laser pulses[J]. Physical Review Letters, 2013, 111: 165002. doi: 10.1103/PhysRevLett.111.165002
    [6] Wang X M, Zgadzaj R, Fazel N, et al. Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV[J]. Nature Communications, 2013, 4(3): 131-140.
    [7] Leemans W P, Gonsalves A J, Mao H S, et al. Multi-GeV electron beams from capillary-discharge-guided subpetawatt laser pulses in the self-trapping regime[J]. Physical Review Letters, 2014, 113: 245002. doi: 10.1103/PhysRevLett.113.245002
    [8] Yang L, Deng Z, Zhou C T, et al. High-charge energetic electron bunch generated by intersecting laser pulses[J]. Physics of Plasmas, 2013, 20: 033102. doi: 10.1063/1.4794352
    [9] Kalmykov S Y, Beck A, Yi S A, et al. Electron self-injection into an evolving plasma bubble: Quasi-monoenergetic laser-plasma acceleration in the blowout regime[J]. Physics of Plasmas, 2011, 18(5): R6189.
    [10] Shen B, Wu Y, Dong K, et al. High-charge energetic electron bunch generated by 100 TW laser pulse[J]. Physics of Plasmas, 2012, 19: 033106. doi: 10.1063/1.3694679
    [11] Németh K, Shen B, Li Y, et al. Laser-driven coherent betatron oscillation in a laser-wakefield cavity[J]. Physical Review Letters, 2008, 100: 095002. doi: 10.1103/PhysRevLett.100.095002
    [12] Fuchs M, Weingartner R, Popp A, et al. Laser-driven soft-X-ray undulator source[J]. Nature Physics, 2009, 5(11): 826-829. doi: 10.1038/nphys1404
    [13] Corde S, Phuoc K T, Fitour R, et al. Controlled betatron X-ray radiation from tunable optically injected electrons[J]. Physical Review Letters, 2011, 107: 255003. doi: 10.1103/PhysRevLett.107.255003
    [14] Yan W, Chen L, Li D, et al. Concurrence of monoenergetic electron beams and bright X-rays from an evolving laser-plasma bubble[J]. Proc Natl Acad Sci USA, 2014, 111(16): 5825-5830. doi: 10.1073/pnas.1404336111
    [15] Chen M, Esarey E, Schroeder C B, et al. Theory of ionization-induced trapping in laser-plasma accelerators[J]. Physics of Plasmas, 2012, 19: 033101. doi: 10.1063/1.3689922
    [16] Yu L, Esarey E, Schroeder C B, et al. Two-color laser-ionization injection[J]. Physical Review Letters, 2014, 112: 125001. doi: 10.1103/PhysRevLett.112.125001
    [17] SSchmid K, Buck A, Sears C M S, et al. Density-transition based electron injector for laser driven wakefield accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2010, 13: 091301. doi: 10.1103/PhysRevSTAB.13.091301
    [18] Buck A, Wenz J, Xu J, et al. Shock-front injector for high-quality laser-plasma acceleration[J]. Physical Review Letters, 2013, 110(18): 185006. doi: 10.1103/PhysRevLett.110.185006
    [19] Umstadter D, Kim J K, Dodd E. Laser injection of ultrashort electron pulses into wakefield plasma waves[J]. Physical Review Letters, 1996, 76(12): 2073-2076. doi: 10.1103/PhysRevLett.76.2073
    [20] Esarey E, Hubbard R F, Leemans W P, et al. Electron injection into plasma wake fields by colliding laser pulses[J]. Physical Review Letters, 1997, 79(14): 2682-2685. doi: 10.1103/PhysRevLett.79.2682
    [21] Schroeder C B, Lee P B, Wurtele J S, et al. Generation of ultra-short electron bunches by colliding laser pulses[J]. Physical Review E, 1999, 59: 6037-6047. doi: 10.1103/PhysRevE.59.6037
    [22] Kotaki H, Masuda S, Kando M, et al. Head-on injection of a high quality electron beam by the interaction of two laser pulses[J]. Physics of Plasmas, 2004, 11(9): 4539-4539. doi: 10.1063/1.1775802
    [23] Fubiani G, Esarey E, Schroeder C B, et al. Beat wave injection of electrons into plasma waves using two interfering laser pulses[J]. Physical Review E, 2004, 70: 016402. doi: 10.1103/PhysRevE.70.016402
    [24] Sheng Z M, Mima K, Zhang J, et al. Efficient acceleration of electrons with counterpropagating intense laser pulses in vacuum and underdense plasma[J]. Physical Review E, 2004, 69: 016407. doi: 10.1103/PhysRevE.69.016407
    [25] Faure J, Rechatin C, Norlin A, et al. Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses[J]. Nature, 2006, 444(7120): 737-739. doi: 10.1038/nature05393
    [26] Rechatin C, Faure J, Lifschitz A, et al. Quasi-monoenergetic electron beams produced by colliding cross-polarized laser pulses in underdense plasmas[J]. New Journal of Physics, 2009, 11: 013011. doi: 10.1088/1367-2630/11/1/013011
    [27] Davoine X, Lefebvre E, Rechatin C, et al. Cold optical injection producing monoenergetic, multi-GeV electron bunches[J]. Physical Review Letters, 2009, 102: 065001. doi: 10.1103/PhysRevLett.102.065001
    [28] Beck A, Davoine X, Lefebvre E. Scaling laws for electron cold injection in the narrow collision pulse approximation[J]. New Journal of Physics, 2011, 13(9): 093016. doi: 10.1088/1367-2630/13/9/093016
    [29] Wang W M, Sheng Z M. Effect of laser parameters on electron injection into laser wakefields in plasma with a counterpropagating additional laser pulse[J]. Physics of Plasmas, 2008, 15: 13101. doi: 10.1063/1.2825671
    [30] Rechatin C, Faure J, Ben-Ismail A, et al. Controlling the phase-space volume of injected electrons in a laser-plasma accelerator[J]. Physical Review Letters, 2009, 102: 164801. doi: 10.1103/PhysRevLett.102.164801
    [31] Deng Z G, Yang L, Zhou C T, et al. Dual effects of stochastic heating on electron injection in laser wakefield acceleration[J]. Physics of Plasmas, 2014, 21: 083103. doi: 10.1063/1.4892262
    [32] Lehe R, Lifschitz A F, Davoine X, et al. Optical transverse injection in laser-plasma acceleration[J]. Physical Review Letters, 2013, 111: 085005. doi: 10.1103/PhysRevLett.111.085005
    [33] Cormier-Michel E, Ranjbar V, Bruhwiler D, et al. Design principles for high quality electron beams via colliding pulses in laser plasma accelerators[J]. Physical Review Special Topics—Accelerators and Beams, 2014, 17: 091301. doi: 10.1103/PhysRevSTAB.17.091301
    [34] Deng Z G, Zhang Z M, Zhang B, et al. Large-charge quasimonoenergetic electron beams produced by off-axis colliding laser pulses in underdense plasma[J]. Physical Review E, 2017, 95(2/1): 023206.
    [35] Rechatin C, Faure J, Lifschitz A, et al. Plasma wake inhibition at the collision of two laser pulses in an underdense plasma[J]. Physics of Plasmas, 2007, 14: 060702. doi: 10.1063/1.2741387
    [36] Tzoufras M, Lu W, Tsung F S, et al. Beam loading in the nonlinear regime of plasma-based acceleration[J]. Physical Review Letters, 2008, 101: 145002. doi: 10.1103/PhysRevLett.101.145002
    [37] Rechatin C, Faure J, Davoine X, et al. Characterization of the beam loading effects in a laser plasma accelerator[J]. New Journal of Physics, 2010, 12: 045023. doi: 10.1088/1367-2630/12/4/045023
    [38] Davoine X, Beck A, Lifschitz A, et al. Cold injection for electron wakefield acceleration[J]. New Journal of Physics, 2010, 12: 095010. doi: 10.1088/1367-2630/12/9/095010
    [39] Lu W, Huang C, Zhou M, et al. Nonlinear theory for relativistic plasma wakefields in the blowout regime[J]. Physical Review Letters, 2006, 96: 165002. doi: 10.1103/PhysRevLett.96.165002
    [40] Esarey E, Pilloff M. Trapping and acceleration in nonlinear plasma waves[J]. Physics of Plasmas, 1995, 2(5): 1432-1436. doi: 10.1063/1.871358
    [41] Kostyukov I, Pukhov A, Kiselev S. Phenomenological theory of laser-plasma interaction in "bubble" regime[J]. Physics of Plasmas, 2004, 11(11): 5256-5264. doi: 10.1063/1.1799371
  • 加载中
图(3)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  237
  • PDF下载量:  121
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-10
  • 修回日期:  2018-11-02
  • 刊出日期:  2018-11-15

目录

    /

    返回文章
    返回