留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ射线作用下氧化铪基MOS结构总剂量效应研究

丁曼

丁曼. γ射线作用下氧化铪基MOS结构总剂量效应研究[J]. 强激光与粒子束, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330
引用本文: 丁曼. γ射线作用下氧化铪基MOS结构总剂量效应研究[J]. 强激光与粒子束, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330
Ding Man. Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation[J]. High Power Laser and Particle Beams, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330
Citation: Ding Man. Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation[J]. High Power Laser and Particle Beams, 2019, 31: 066001. doi: 10.11884/HPLPB201931.180330

γ射线作用下氧化铪基MOS结构总剂量效应研究

doi: 10.11884/HPLPB201931.180330
基金项目: 

国家自然科学基金青年基金项目 51507049

详细信息
    作者简介:

    丁曼(1986—),女,讲师,极端环境下电介质损伤机理研究;farry3386@163.com

  • 中图分类号: TM85

Total dose effect of HfO2 based MOS capacitors under gamma-ray radiation

  • 摘要: 使用原子层淀积方法得到了7.8 nm厚度的HfO2薄膜并通过直接溅射金属铝电极得到了Al/HfO2/Si MOS电容结构,测量得到了HfO2基MOS结构在60Co γ射线辐照前后的电容-电压特性,使用原子力显微镜得到了HfO2薄膜在辐照前后的表面微观形貌,使用X射线光电子能谱方法测量得到了HfO2薄膜在辐照前后的化学结构变化。研究发现,使用原子层淀积方法制备的HfO2薄膜表面质量较高;γ射线辐照在HfO2栅介质中产生了数量级为1012 cm-2的负的氧化层陷阱电荷;HfO2薄膜符合化学计量比,介质内部主要的缺陷为氧空位且随着辐照剂量的增加而增加,说明辐照在介质中引入了陷阱从而导致MOS结构性能的退化。
  • 图  1  HfO2薄膜的表面形貌

    Figure  1.  Surface morphology of HfO2 film

    图  2  辐照前后MOS结构的CV曲线

    Figure  2.  CV characteristic of MOS capacitor before and after irradiation

    图  3  HfO2薄膜表面XPS全谱

    Figure  3.  XPS result on the surface of HfO2 film

    图  4  HfO2薄膜中主要元素的窄谱及分峰结果

    Figure  4.  Detailed XPS result on the surface of HfO2

  • [1] Shelden G V. Review of the 2001 ITRS Update[C]//Proc of SPIE. 2002: 4764: 9-17.
    [2] Ma T P, Dressendorfer P V. Ionizing radiation effects in MOS devices and circuits[M]. New Jersey: John Wiley & Sons, 1989.
    [3] 庞健, 何小中, 杨柳, 等. 30 MeV电子束轰击旋转钽靶产生轫致辐射分析[J]. 强激光与粒子束, 2017, 29: 065101. doi: 10.11884/HPLPB201729.160502

    Pang Jian, He Xiaozhong, Yang Liu, et al. Analysis on bremsstrahlung characteristics of 30 MeV multi-pulse beams bombarding rotating tantalum-based target. High Power Laser and Particle Beams, 2017, 29: 065101 doi: 10.11884/HPLPB201729.160502
    [4] 王毅, 李勤, 代志勇. 蒙特卡罗模拟分析电子束发射度对照射量空间分布影响[J]. 强激光与粒子束, 2017, 29: 065006. doi: 10.11884/HPLPB201729.170029

    Wang Yi, Li Qin, Dai Zhiyong. Analysis on influence of beam emittance on spatial distribution of exposure using Monte Carlo simulation. High Power Laser and Particle Beams, 2017, 29: 065006 doi: 10.11884/HPLPB201729.170029
    [5] 毕岚, 薛谦忠, 席宝坤. 用于瞬态高功率脉冲辐射的超宽带天线设计[J]. 强激光与粒子束, 2018, 30: 083007. doi: 10.11884/HPLPB201830.180001

    Bi Lan, Xue Qianzhong, Xi Baokun. Design of ultra-wideband antenna for high-power transient pulse radiation. High Power Laser and Particle Beams, 2018, 30: 083007 doi: 10.11884/HPLPB201830.180001
    [6] 冯加明, 邹德慧, 范晓强, 等. 双极晶体管中子注量探测器的标定[J]. 强激光与粒子束, 2018, 30: 096008. doi: 10.11884/HPLPB201830.180138

    Feng Jiaming, Zou Dehui, Fan Xiaoqiang, et al. Calibration of bipolar transistor neutron fluence detector. High Power Laser and Particle Beams, 2018, 30: 096008 doi: 10.11884/HPLPB201830.180138
    [7] 薛院院, 王祖军, 刘静, 等. CCD质子辐照损伤效应的三维蒙特卡罗模拟[J]. 强激光与粒子束, 2018, 30: 044001. doi: 10.11884/HPLPB201830.170248

    Xue Yuanyuan, Wang Zujun, Liu Jing, et al. Numerical calculation and analysis of proton radiation effects on CCD based on Monte Carlo method. High Power Laser and Particle Beams, 2018, 30: 044001 doi: 10.11884/HPLPB201830.170248
    [8] 王宇航, 高杨, 韩宾, 等. 薄膜体声波谐振器的伽马辐照敏感机理分析[J]. 强激光与粒子束, 2017, 29: 074101. doi: 10.11884/HPLPB201729.170007

    Wang Yuhang, Gao Yang, Han Bin, et al. Analysis on gamma irradiation sensing mechanisms of thin film bulk acoustic resonators. High Power Laser and Particle Beams, 2017, 29: 074101 doi: 10.11884/HPLPB201729.170007
    [9] 严维鹏, 李斌康, 宋顾周, 等. 闪烁体衰减常数对辐射源边界测量影响数值模拟[J]. 强激光与粒子束, 2017, 29: 066004. doi: 10.11884/HPLPB201729.160470

    Yan Weipeng, Li Binkang, Song Guzhou, et al. Numerical simulation of scintillant decay constant effect on radiation source boundary measurement. High Power Laser and Particle Beams, 2017, 29: 066004 doi: 10.11884/HPLPB201729.160470
    [10] Massengill L W, Choi B K, Fleetwood D M, et al. Heavy-ion-induced breakdown in ultra-thin gate oxides and high-k dielectrics[J]. IEEE Trans Nuclear Science, 2001, 48 (6): 1904-1912. doi: 10.1109/23.983149
    [11] Fleetwood D M, Thome F V, Tsao S S, et al. High-temerature silicon-on-insulator electronics for space nuclear-power systems: requirements and feasibility[J]. IEEE Trans Nuclear Science, 1988, 35 (5): 1099-1112. doi: 10.1109/23.7506
    [12] Fleetwood D M. Long-term annealing study of midgap inter-face-trap charge neutrality[J]. Applied Physics Letters, 1992, 60 (23): 2883-2885. doi: 10.1063/1.106807
    [13] Fleetwood D M, Winokur P S, Schwank J R. Using laboratory X-ray and Co-60 irradiations to predict CMOS device response in strategic and space environments[J]. IEEE Trans Nuclear Science, 1988, 35(6): 1497-1505. doi: 10.1109/23.25487
    [14] Fleetwood D M. Fast and slow border traps in MOS devices[J]. IEEE Trans Nuclear Science, 1996, 43 (3): 779-786. doi: 10.1109/23.510713
    [15] Fleetwood D M. Effects of hydrogen transport and reactions on microelectronics radiation response and reliability[J]. Microelec-tronics Reliability, 2002, 42 (4/5): 523-541.
    [16] Fleetwood D M, Beegle R W, Sexton F W, et al. Using a 10-keV X-ray source for hardness assurance[J]. IEEE Trans Nuclear Science, 1986, 33 (6): 1330-1336. doi: 10.1109/TNS.1986.4334601
    [17] Fleetwood D M, Cnes. Fast and slow border traps in MOS devices[C]//Proc RADECS 95 -(Third European Conference on Radiation and Its Effects on Components and Systems). 1996: 1-8.
    [18] Fleetwood D M, Miller S L, Reber R A, et al. New insights into radiation-induced oxide-trap charge through thermally-stimulated-current measurement and analysis[J]. IEEE Trans on Nuclear Science, 1992, 39 (6): 2192-2203. doi: 10.1109/23.211421
    [19] Fleetwood D M, Reber R A, Winokur P S. Effect of bias on thermally stimulated current (TSC) in irradiated MOS devices[J]. IEEE Trans Nuclear Science, 1991, 38 (6): 1066-1077. doi: 10.1109/23.124076
    [20] Fleetwood D M, Rodgers M P, Tsetseris L, et al. Effects of device aging on microelectronics radiation response and reliability[J]. Microelectronics Reliability, 2007, 47 (7): 1075-1085. doi: 10.1016/j.microrel.2006.06.009
    [21] Fleetwood D M, Saks N S. Oxide, interface, and border traps in thermal, N2O, and N2O-nitrided oxides[J]. Journal of Applied Physics, 1996, 79(3): 1583-1594. doi: 10.1063/1.361002
    [22] Fleetwood D M, Scofield J H. Evidence that similar point-defects cause 1/f noise and radiation-induced-hole trapping in metal-oxide-semiconductor transistors[J]. Physical Review Letters, 1990, 64 (5): 579-582. doi: 10.1103/PhysRevLett.64.579
    [23] Fleetwood D M, Shaneyfelt M R, Riewe L C, et al. The role of border traps in MOS high-temperature postirradiation annealing response[J]. IEEE Trans Nuclear Science, 1993, 40 (6): 1323-1334. doi: 10.1109/23.273535
    [24] Fleetwood D M, Shaneyfelt M R, Schwank J R. Estimating oxide-trap, interface-trap, and border-trap charge-densities in metal-oxide-semiconductor transistors[J]. Applied Physics Letters, 1994, 64 (15): 1965-1967. doi: 10.1063/1.111757
    [25] Fleetwood D M, Shaneyfelt M R, Warren W L, et al. Border traps: issues for MOS radiation response and long-term reliability[J]. Microelectronics and Reliability, 1995, 35(3): 403-428. doi: 10.1016/0026-2714(95)93068-L
    [26] Fleetwood D M, Warren W L, Schwank J R, et al. Effects of interface traps and border traps on MOS postirradiation annealing response[J]. IEEE Trans Nuclear Science, 1995, 42(6): 1698-1707. doi: 10.1109/23.488768
    [27] Fleetwood D M, Winokur P S, Reber R A, et al. Effects of oxide traps, interface traps, and border traps on metal-oxide-semiconductor devices[J]. Journal of Applied Physics, 1993, 73(10): 5058-5074. doi: 10.1063/1.353777
    [28] Fleetwood D M, Winokur P S, Riewe L C, et al. Bulk oxide traps and border traps in metal-oxide-semiconductor capacitors[J]. Journal of Applied Physics, 1998, 84 (11): 6141-6148. doi: 10.1063/1.368881
    [29] Fleetwood D M, Xiong H D, Lin J S. 1/f noise in SOI buried oxides and alternative dielectrics to SiO2[C]//Noise in Devices and Circuits Ⅲ. 2005: 63-74.
    [30] Fleetwood D M, Xiong H D, Lu Z Y, et al. Unified model of hole trapping, 1/f noise, and thermally stimulated current in MOS devices[J]. IEEE Trans Nuclear Science, 2002, 49(6): 2674-2683. doi: 10.1109/TNS.2002.805407
  • 加载中
图(4)
计量
  • 文章访问数:  1059
  • HTML全文浏览量:  234
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-19
  • 修回日期:  2019-02-21
  • 刊出日期:  2019-07-15

目录

    /

    返回文章
    返回