留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BP神经网络的圆形孔缝耦合截面预测

祝磊 刘强 赵翔 闫丽萍 周海京

祝磊, 刘强, 赵翔, 等. 基于BP神经网络的圆形孔缝耦合截面预测[J]. 强激光与粒子束, 2019, 31: 033201. doi: 10.11884/HPLPB201931.190011
引用本文: 祝磊, 刘强, 赵翔, 等. 基于BP神经网络的圆形孔缝耦合截面预测[J]. 强激光与粒子束, 2019, 31: 033201. doi: 10.11884/HPLPB201931.190011
Zhu Lei, Liu Qiang, Zhao Xiang, et al. Prediction of coupling section of circular aperture based on BP neural network[J]. High Power Laser and Particle Beams, 2019, 31: 033201. doi: 10.11884/HPLPB201931.190011
Citation: Zhu Lei, Liu Qiang, Zhao Xiang, et al. Prediction of coupling section of circular aperture based on BP neural network[J]. High Power Laser and Particle Beams, 2019, 31: 033201. doi: 10.11884/HPLPB201931.190011

基于BP神经网络的圆形孔缝耦合截面预测

doi: 10.11884/HPLPB201931.190011
基金项目: 

国家自然科学基金面上项目 61877041

国家自然科学基金委员会和中国工程物理研究院联合基金项目 NSAF-U1530143

详细信息
    作者简介:

    祝磊(1994—), 男,硕士研究生,从事电磁兼容研究; zhuleiscu@hotmail.com

    通讯作者:

    赵翔(1973—), 女,教授,从事电磁兼容分析与电磁效应评估研究; zhaoxiang@scu.edu.cn

  • 中图分类号: TN911

Prediction of coupling section of circular aperture based on BP neural network

  • 摘要: 在对电磁波经孔缝传输/泄露的分析中,孔缝耦合截面的获取十分重要。针对现有公式无法准确获取谐振频段圆形孔缝耦合截面的问题,将BP神经网络应用于圆孔耦合截面的快速获取,该模型适用于电尺寸(半径波长比)在[0.08, 3]之间的圆形孔缝。在不同入射角度和极化角度的入射波辐照下,用全波分析软件计算无限大理想导体平板上不同电尺寸圆孔的耦合截面,用圆孔的耦合截面除以其几何面积得到圆孔的归一化耦合截面。利用这些数据训练神经网络,建立了一个以圆形孔缝的电尺寸、入射波的入射角度和极化角度为输入参数,孔缝的归一化耦合截面为输出参数的BP神经网络模型。通过与全波分析的对比可知,该模型能够快速准确地预测任意入射角与极化角平面波辐照下电尺寸在[0.08, 3]之间的圆形孔缝的归一化耦合截面。
  • 图  1  神经网络结构示意图

    Figure  1.  Neural network structure diagram

    图  2  数值实验系统示意图

    Figure  2.  Numerical experiment system diagram

    图  3  固定电尺寸的圆孔的归一化耦合截面

    Figure  3.  Normalized coupling section of a circular aperture with a fixed electrical dimension

    图  4  不同电尺寸时神经网络的相对误差

    Figure  4.  Relative error of neural networks with different electrical dimensions

    图  5  垂直入射时几种获取耦合截面方法的对比

    Figure  5.  Comparison of several methods for obtaining coupling sections at normal incidence

    表  1  隐层结构不同的神经网络拟合精度

    Table  1.   Results of experiments

    neuron number in single hidden layer MSE number of neurons in each layer of double hidden layer MSE
    10 6.31e-04 (9, 9) 5.05e-05
    30 7.45e-05 (10, 10) 1.90e-05
    60 1.17e-05 (20, 20) 1.91e-06
    90 4.20e-06 (30, 30) 5.81e-07
    120 4.02e-06 (45, 45) 9.90e-08
    500 6.62e-07 (60, 60) 2.81e-08
    下载: 导出CSV

    表  2  圆孔归一化耦合截面预测

    Table  2.   Prediction of normalized coupling section of circular apertures

    incident angle, polarization angle, electrical dimension predictive value(calculation time/s) simulation value(calculation time/s) RE/%
    (π/18, -7π/36, 2) 1.001 7(0.025 993) 0.976 4(55) 2.59
    (8π/45, 2π/9, 0.798) 0.947 9(0.018 364) 0.919 6(10) 3.08
    (2π/9, 8π/45, 0.224) 0.864 8(0.018 320) 0.857 0(3) 0.90
    (π/4, π/4, 0.288) 0.910 6(0.024 764) 0.910 0(3) 0.06
    (19π/60, -73π/180, 1.5) 0.544 4(0.010 157) 0.552 2(26) 1.41
    (7π/18, -17π/36, 0.554) 0.606 3(0.018 540) 0.608 6(7) 0.38
    (4π/9, -4π/9, 0.602) 0.528 7(0.017 772) 0.526 1(6) 0.49
    下载: 导出CSV
  • [1] Petersson L E R, Smith G S. Transmission of an evanescent wave through a subwavelength aperture in a PEC screen[C]//IEEE Antennas & Propagation Society International Symposium. 2004: 4551-4554.
    [2] Robinson M P, Clegg J, Marvin A C. Radio frequency electromagnetic fields in large conducting enclosures: effects of apertures and human bodies on propagation and field-statistics[J]. IEEE Trans Electromagnetic Compatibility, 2006, 48(2): 304-310. doi: 10.1109/TEMC.2006.873856
    [3] Cho Y K, Son H W, Choi J Y. Transmission resonance through small apertures[C]//IEEE International Workshop on Antenna Technology. 2012: 1-3.
    [4] Bertrand A, Ramos M. Apertures coupling for electrical field calculation in Ariane 5 launcher cavities: Experimental characterization of apertures' effective coupling cross section in oversized complex cavities[C]//International Symposium on Electromagnetic Compatibility. 2014: 677-680.
    [5] Gunnarsson R, Mats B. Transmission cross section for apertures and arrays calculated using time-domain simulations[C]//International Symposium on Electromagnetic Compatibility. 2014: 169-174.
    [6] Cho Y K, Son H W, Lee C H. Transmission resonance through small apertures in conducting screen[C]//IEEE International Workshop on Antenna Technology. 2015: 77-79.
    [7] Koch G, Kolbig K. The transmission coefficient of elliptical and rectangular apertures for electromagnetic waves[J]. IEEE Trans Antennas &Propagation, 1968, 16(1): 78-83.
    [8] Butler C, Rahmat-Samii Y, Mittra R. Electromagnetic penetration through apertures in conducting surfaces[J]. IEEE Trans Antennas & Propagation, 1978, 26(1): 82-93.
    [9] Hill D A, Ma M T, Ondrejka A R, et al. Aperture excitation of electrically large, lossy cavities[J]. IEEE Trans Electromagnetic Compatibility, 1994, 36(3): 169-178. doi: 10.1109/15.305461
    [10] Olyslager F, Laermans E, De Zutter D, et al. Numerical and experimental study of the shielding effectiveness of a metallic enclosure[J]. IEEE Trans Electromagnetic Compatibility, 1999, 41(3): 202-213. doi: 10.1109/15.784155
    [11] Khan Z A, Bunting C F, Deshpande M D. Shielding effectiveness of metallic enclosures at oblique and arbitrary polarizations[J]. IEEE Trans Electromagnetic Compatibility, 2005, 47(1): 112-122. doi: 10.1109/TEMC.2004.842117
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  1043
  • HTML全文浏览量:  190
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-04
  • 修回日期:  2019-02-25
  • 刊出日期:  2019-03-15

目录

    /

    返回文章
    返回