留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

圆柱腔体光电输运的蒙特卡罗模拟

孙会芳 张玲玉 董志伟 周海京

孙会芳, 张玲玉, 董志伟, 等. 圆柱腔体光电输运的蒙特卡罗模拟[J]. 强激光与粒子束, 2019, 31: 103221. doi: 10.11884/HPLPB201931.190143
引用本文: 孙会芳, 张玲玉, 董志伟, 等. 圆柱腔体光电输运的蒙特卡罗模拟[J]. 强激光与粒子束, 2019, 31: 103221. doi: 10.11884/HPLPB201931.190143
Sun Huifang, Zhang Lingyu, Dong Zhiwei, et al. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31: 103221. doi: 10.11884/HPLPB201931.190143
Citation: Sun Huifang, Zhang Lingyu, Dong Zhiwei, et al. Monte Carlo simulations of photon-electron transports of cylinder cavity[J]. High Power Laser and Particle Beams, 2019, 31: 103221. doi: 10.11884/HPLPB201931.190143

圆柱腔体光电输运的蒙特卡罗模拟

doi: 10.11884/HPLPB201931.190143
详细信息
    作者简介:

    孙会芳(1974—), 女, 硕士, 副研究员, 主要从事高功率微波及电磁脉冲效应研究; sun_huifang@iapcm.ac.cn

  • 中图分类号: TN753.4

Monte Carlo simulations of photon-electron transports of cylinder cavity

  • 摘要: 应用三维并行蒙特卡罗程序JMCT, 计算了特征温度分别为1, 3, 5, 8keV的黑体谱X射线入射到铝、二氧化硅、金的表面的背散射光电产额和电子能谱, 并与文献结果进行对比, 验证了程序的正确性, 进而针对系统电磁脉冲(SGEMP)研究中的典型几何结构——金属圆柱腔体, 模拟计算了其在黑体谱X射线照射下的光电输运过程, 用温度为1keV、注量为1J/m2的黑体谱X射线平行照射圆柱腔侧面, 半个侧面发射光电子, 计算得出了和方位角相关的不同面上发射光电子的光电产额、能谱分布和角分布, 结果表明掠入射的X射线会产生更高的光电产额; 光电子的发射角分布都基本符合余弦角分布的规律。
  • 图  1  试算模型示意图

    Figure  1.  Sketch of test model

    图  2  各种材料光电产额及与文献[9-10]的对比

    Figure  2.  Backscattered photoelectric yields of three materials from calculation and literatures

    图  3  不同温度黑体谱X射线照射下三种材料光电子能谱

    Figure  3.  Photoelectron energy spectra of three materials under incidence of different temperature blackbody X-ray from calculation

    图  4  计算模型示意图

    Figure  4.  Sketch of calculation model

    图  5  入射X射线能谱及各个面背向散射光电子的能谱和角分布

    Figure  5.  Incident X-ray energy spectra and backscattered photoelectron energy spectra and angular distribution of three surfaces

    表  1  三种材料背散射光电产额

    Table  1.   Backscattered photoelectric yields of three materials

    temperature/keV photoelectric yields/(electrons·photon-1) photoelectric yields/(electrons·cal-1)
    Al Au SiO2 Al Au SiO2
    1 4.70×10-3 2.13×10-2 3.02×10-3 4.02×1013 1.82×1014 2.58×1013
    3 3.10×10-3 1.99×10-2 2.21×10-3 9.77×1012 6.27×1013 6.99×1012
    5 2.05×10-3 1.76×10-2 1.55×10-3 3.93×1012 3.38×1013 2.97×1012
    8 1.33×10-3 1.48×10-2 1.03×10-3 1.60×1012 1.77×1013 1.24×1012
    Note: 1 cal=4.184 J.
    下载: 导出CSV
  • [1] 王泰春, 贺云汉, 王玉芝. 电磁脉冲导论[M]. 北京: 国防工业出版社, 2011.

    Wang Taichun, He Yunhan, Wang Yuzhi. Introduction to electromagnetic pulse. Beijing: National Defense Industry Press, 2011
    [2] 程引会, 周辉, 李保忠, 等. 光电子发射引起的柱腔内系统电磁脉冲的模拟[J]. 强激光与粒子束, 2004, 16(8): 1029-1032. http://www.hplpb.com.cn/article/id/624

    Cheng Yinhui, Zhou Hui, Li Baozhong, et al. Simulation of system-generated electromagnetic pulse caused by emitted photoelectron in cavity. High Power Laser and particle Beams, 2004, 16(8): 1029-1032 http://www.hplpb.com.cn/article/id/624
    [3] Higgins D F, Lee K S H, Marin L. System-generated EMP[J]. IEEE Trans Antennas and Propagation, 1978, 26(1): 14-22. doi: 10.1109/TAP.1978.1141797
    [4] Schmidt M J. Elementary external SGEMP model for system engineering design[J]. IEEE Trans Nuclear Science, 1985, S32(6): 4295-4299.
    [5] Holland R. Comparison of FTDT particle pushing and direct differencing of Boltzmann's equation for SGEMP problems[J]. IEEE Trans Electromagnetic Compatibility, 1995, 37(3): 433-442. doi: 10.1109/15.406532
    [6] 孙会芳, 董志伟, 张芳. 系统电磁脉冲一维边界层的数值模拟[J]. 强激光与粒子束, 2018, 30: 013004. doi: 10.11884/HPLPB201830.170210

    Sun Huifang, Dong Zhiwei, Zhang Fang. Simulation study of the one-dimensional SGEMP boundary layer. High Power Laser and Particle Beams, 2018, 30: 013004 doi: 10.11884/HPLPB201830.170210
    [7] 周开明, 王艳, 邓建红. 线缆系统电磁脉冲效应测量系统研制和试验[J]. 强激光与粒子束, 2014, 26: 073207. doi: 10.11884/HPLPB201426.073207

    Zhou Kaiming, Wang Yan, Deng Jianhong. Development and test of measurement system for cable system generated electromagnetic pulse effects. High Power Laser and Particle Beams, 2014, 26: 073207 doi: 10.11884/HPLPB201426.073207
    [8] 周辉, 郭红霞, 李宝忠, 等. 金属壳体和电缆的系统电磁脉冲响应[J]. 强激光与粒子束, 2004, 16(5): 645-648. http://www.hplpb.com.cn/article/id/903

    Zhou Hui, Guo hongxia, Li Baozhong, et al. Response of metal shell and cables to system generate electromagnetic pulse effects. High Power Laser and Particle Beams, 2004, 16(5): 645-648 http://www.hplpb.com.cn/article/id/903
    [9] Carron N J. Characteristic steady-state electron emission properties for parametric blackbody X-ray spectra on several materials[R]. AD-0086, 1976.
    [10] 郭红霞, 周辉, 常冬梅, 等. 蒙特卡罗方法对黑体辐射谱的光电子参数计算[C]//第9届全国核电子学与核探测技术学术年会论文集. 1998.

    Guo hongxia, Zhou Hui, Chang Dongmei, et al. Calculation of photoelectric parameter for black-body spectra using Monte-Carlo method//Proceedings of the 9th National Conference on Nuclear Electronics & Nuclear Detection Technology. 1998
    [11] 张玲玉, 李瑞, 李刚, 等. JMCT光子-电子耦合输运模拟计算研究[J]. 强激光与粒子束, 2017, 29: 126007. doi: 10.11884/HPLPB201729.170253

    Zhang Lingyu, Li Rui, Li Gang, et al. Simulation study of JMCT photon-electron coupled transport. High Power Laser and Particle Beams, 2017, 29: 126007 doi: 10.11884/HPLPB201729.170253
    [12] 李刚, 张宝印, 邓力, 等. 蒙特卡罗粒子输运程序JMCT研制[J]. 强激光与粒子束, 2013, 25(1): 158-162. doi: 10.3788/HPLPB20132501.0158

    Li Gang, Zhang Baoyin, Deng Li, et al. Development of Monte Carlo particle transport code JMCT. High Power Laser and Particle Beams, 2013, 25(1): 158-162 doi: 10.3788/HPLPB20132501.0158
    [13] Tumolillo T A, Wondra J P, Radasky W A. Plasma effects on the SGEMP space-charge boundary layer[J]. IEEE Trans Nuclear Science, 1980, 27(6): 1608-1615. doi: 10.1109/TNS.1980.4331077
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  1198
  • HTML全文浏览量:  251
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 修回日期:  2019-09-04
  • 刊出日期:  2019-10-15

目录

    /

    返回文章
    返回