留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种FPGA芯片在射频干扰下的失效机理

刘健 陈弟虎 粟涛

刘健, 陈弟虎, 粟涛. 一种FPGA芯片在射频干扰下的失效机理[J]. 强激光与粒子束, 2019, 31: 093201. doi: 10.11884/HPLPB201931.190161
引用本文: 刘健, 陈弟虎, 粟涛. 一种FPGA芯片在射频干扰下的失效机理[J]. 强激光与粒子束, 2019, 31: 093201. doi: 10.11884/HPLPB201931.190161
Liu Jian, Chen Dihu, Su Tao. Failure mechanism of a kind of FPGA chip under RF interference[J]. High Power Laser and Particle Beams, 2019, 31: 093201. doi: 10.11884/HPLPB201931.190161
Citation: Liu Jian, Chen Dihu, Su Tao. Failure mechanism of a kind of FPGA chip under RF interference[J]. High Power Laser and Particle Beams, 2019, 31: 093201. doi: 10.11884/HPLPB201931.190161

一种FPGA芯片在射频干扰下的失效机理

doi: 10.11884/HPLPB201931.190161
基金项目: 

国家自然科学基金资助项目 61471402

广东省科技项目 2016B010123005

广东省科技项目 2015B090912001

广东省科技项目 2017B0909005

详细信息
    作者简介:

    刘健(1994—),男,硕士研究生,从事可编程器件电磁兼容与电磁环境效应;liuj535@mail2.sysu.edu.cn

    通讯作者:

    粟涛(1977—),男,副教授,从事集成电路射频电动力学;sutao@mail.sysu.edu.cn

  • 中图分类号: TN432

Failure mechanism of a kind of FPGA chip under RF interference

  • 摘要: 研究了一种Xilinx公司FPGA芯片XC7A200T-2FBG676在射频干扰下的失效机理。通过对该FPGA内核供电引脚注入射频干扰发现,某些频率下,随着干扰强度的增大,FPGA会依次出现三种不同类型的失效,分别为该FPGA的内核失效、I/O失效和配置失效。测试分析和HSPICE仿真表明,内核失效是由于BRAM的逻辑层抗扰性差所致,I/O失效是由于射频干扰下输入/输出信号的同时失真所致,配置失效则是由于配置系统读取错误的配置使能信号所致。研究可为该FPGA芯片或者系统电磁兼容设计以及该FPGA抗扰性检测方案的制定提供指导。
  • 图  1  反馈信号在EMI下的变化:正常情况(a),电平失配(b)和周期失配(c)

    Figure  1.  Change of feedback signal under EMI: normal state(a), level mismatch(b) and cycle mismatch(c)

    图  2  FPGA测试程序①(a)和程序②(b)

    Figure  2.  Testing programs for FPGA

    图  3  程序①时序图

    Figure  3.  Sequence diagram of program of ①

    图  4  FPGA EMI测试系统

    Figure  4.  FPGA EMI test system

    图  5  FPGA EMI测试板

    Figure  5.  FPGA EMI test board

    图  6  正常状态反馈信号特征图

    Figure  6.  Characteristic diagram of feedback signals in normal state

    图  7  I/O失效时反馈信号特征(a)和其滤波后特征(b)

    Figure  7.  Feedback signal feature (a) and its filtered feature (b) when I/O fails

    图  8  配置失效时反馈信号特征

    Figure  8.  Feedback signal feature when configuration fails

    图  9  内核失效时反馈信号(a)和BRAM输出特征图(b)

    Figure  9.  Feedback signal feature (a) and BRAM output feature (b) when core fails

    图  10  FPGA失效曲线图

    Figure  10.  FPGA failure curves: 520 MHz~550 MHz(a), 750 MHz~890 MHz(b) and 1030 MHz~1130 MHz(c)

    图  11  Xilinx 7系列FPGA SPI x1/x2配置时序图[10]

    Figure  11.  Timing diagram of Xilinx 7 series FPGA SPI x1/x2 configuration[10]

    图  12  输入至内核EMI仿真模型

    Figure  12.  Input to the core EMI simulation model

    图  13  EMI对输入到内核波形的影响

    Figure  13.  EMI Influence on waveform of input to thecore

    图  14  配置失效过程

    Figure  14.  Configuration failure process

    图  15  内核至输出EMI仿真模型

    Figure  15.  Core to the input EMI simulation model

    图  16  EMI下电平提升现象

    Figure  16.  EMI level rise phenomenon

    图  17  I/O失效过程

    Figure  17.  I/O failure process

  • [1] Christopoulos C. Electromagnetic compatibility (EMC) in challenging environments[M]. Springer International Publishing, 2017.
    [2] 黎明, 黄如. 后摩尔时代大规模集成电路器件与集成技术[J]. 中国科学: 信息科学, 2018, 48(8): 963-977. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201808001.htm

    Li Ming, Huang Ru. Device and integration technologies for VLSI in post-Moore era. Scientia Sinica: Informationis, 2018, 48(8): 963-977 https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201808001.htm
    [3] Coulson D R. EMC-hardening microprocessor-based systems[C]//IEE Colloquium on Achieving Electromagnetic Compatibility: Accident or Design. 1997.
    [4] Fiori F, Musolino F. Analysis of EME produced by a microcontroller operation[C]//Proceedings Design, Automation and Test in Europe Conference and Exhibition. 2001.
    [5] Su T, Unger M, Steinecke T, et al. Using Error-Source Switching (ESS) concept to analyze the conducted radio frequency electromagnetic immunity of microcontrollers[J]. IEEE Transactions on Electromagnetic Compatibility, 2012, 54(3): 634-645. doi: 10.1109/TEMC.2011.2165341
    [6] Dehbaoui A, Dutertre J M, Robisson B, et al. Electromagnetic transient faults injection on a hardware and a software implementations of AES[C]//Fault Diagnosis and Tolerance in Cryptography (FDTC). 2012.
    [7] Zussa L, Dehbaoui A, Tobich K, et al. Efficiency of a glitch detector against electromagnetic fault injection[C]//Conference on European Design and Automation Association. 2014.
    [8] Ren L, Li T, Chandra S. Prediction of power supply noise from switching activity in an FPGA[J]. IEEE Transactions on Electromagnetic Compatibility, 2014, 56(3): 699-706. doi: 10.1109/TEMC.2013.2293872
    [9] 程俊平, 周长林, 余道杰, 等. 基于供电网络传导耦合的FPGA电磁敏感特性分析[J]. 强激光与粒子束, 2019, 31: 023202. doi: 10.11884/HPLPB201931.180322

    Cheng Junping, Zhou Changlin, Yu Daojie, et al. Electromagnetic susceptibility analysis of FPGA based on conducted coupling of power supply network. High Power Laser and Particle Beams, 2019, 31: 023202 doi: 10.11884/HPLPB201931.180322
    [10] Xilinx Inc. Series FPGAs Configuration User Guide. Version[EB/OL]. http://china.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf.
  • 加载中
图(17)
计量
  • 文章访问数:  1346
  • HTML全文浏览量:  329
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-13
  • 修回日期:  2019-06-11
  • 刊出日期:  2019-09-15

目录

    /

    返回文章
    返回