留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于抛物方程的海陆环境信号时延与到达角估计

张东民 廖成 邓小川 冯菊

张东民, 廖成, 邓小川, 等. 基于抛物方程的海陆环境信号时延与到达角估计[J]. 强激光与粒子束, 2019, 31: 103211. doi: 10.11884/HPLPB201931.190230
引用本文: 张东民, 廖成, 邓小川, 等. 基于抛物方程的海陆环境信号时延与到达角估计[J]. 强激光与粒子束, 2019, 31: 103211. doi: 10.11884/HPLPB201931.190230
Zhang Dongmin, Liao Cheng, Deng Xiaochuan, et al. Estimation of time-delay and direction of arrival in complex sea and land environment using parabolic equation method[J]. High Power Laser and Particle Beams, 2019, 31: 103211. doi: 10.11884/HPLPB201931.190230
Citation: Zhang Dongmin, Liao Cheng, Deng Xiaochuan, et al. Estimation of time-delay and direction of arrival in complex sea and land environment using parabolic equation method[J]. High Power Laser and Particle Beams, 2019, 31: 103211. doi: 10.11884/HPLPB201931.190230

基于抛物方程的海陆环境信号时延与到达角估计

doi: 10.11884/HPLPB201931.190230
基金项目: 

国家自然科学基金项目 61771407

详细信息
    作者简介:

    张东民(1990—), 男,博士生,从事电波传播与计算电磁学研究; zhangdongmin@my.swjtu.edu.cn

    通讯作者:

    廖成(1964—), 男,博导,教授,从事天线理论与技术、电波传播和计算电磁学研究; c.liao@swjtu.edu.cn

  • 中图分类号: TN011

Estimation of time-delay and direction of arrival in complex sea and land environment using parabolic equation method

  • 摘要: 针对复杂海陆环境中的无线信号传播预测问题,研究了适用于抛物方程的信号时延与到达角估计方法。将自由空间中抛物方程轴向波前信号视为本地副本信号,然后利用信号的自相关特性,将接收信号与副本信号进行互相关运算,最后通过相关函数的峰值检索,得到脉冲信号在复杂环境中传播的附加时延。采用数值算例,验证了该方法的正确性和有效性。此外,采用多重信号分类算法,由抛物方程构建接收阵列的协方差矩阵,并对其进行特征值分解,然后利用信号子空间和噪声子空间的正交性,实现复杂环境中的信号到达角估计。仿真结果表明,相比于传统的平面波谱方法,该方法具有更高的多径分辨率。基于上述方法,并结合数字地图,在典型的海陆环境中进行了仿真实验,分析了蒸发波导对脉冲信号传播时延和到达角的影响。
  • 图  1  发射脉冲波形

    Figure  1.  Transmitted pulse

    图  2  时延估计结果

    Figure  2.  Time-delay estimation results

    图  3  不同阵列单元数时的DOA估计结果

    Figure  3.  DOA estimation results for different numbers of array elements

    图  4  在接收点(50 km, 200 m)处的DOA估计结果

    Figure  4.  DOA estimation results at position (50 km, 200 m)

    图  5  仿真实验场景

    Figure  5.  Scene of the simulation experiment

    图  6  不同蒸发波导高度时的电场分布

    Figure  6.  Electric field distribution at different duct heights

    图  7  接收信号时延与蒸发波导高度的关系

    Figure  7.  Relationship between signal delay and duct height

    图  8  接收信号DOA与蒸发波导高度的关系

    Figure  8.  Relationship between signal's DOA and duct height

  • [1] 白瑞杰, 廖成, 张青洪, 等. 复杂地理环境的图像分割及电波传播特性[J]. 强激光与粒子束, 2015, 27: 103214. doi: 10.11884/HPLPB201527.103214

    Bai Ruijie, Liao Cheng, Zhang Qinghong, et al. Image segmentation of complex geographical environment and wave propagation characteristics. High Power Laser and Particle Beams, 2015, 27: 103214 doi: 10.11884/HPLPB201527.103214
    [2] 张青洪, 廖成, 李瀚宇, 等. 基于JASMIN框架的抛物方程有限差分解法并行计算及其应用[J]. 强激光与粒子束, 2015, 27: 083204. doi: 10.11884/HPLPB201527.083204

    Zhang Qinghong, Liao Cheng, Li Hanyu, et al. Parallel computing of finite difference algorithm for parabolic equation based on JASMIN and its application. High Power Laser and Particle Beams, 2015, 27: 083204 doi: 10.11884/HPLPB201527.083204
    [3] Marco A N, Silva, E C, Markurs L. Analysis of the effects of irregular terrain on radio wave propagation based on a three-dimensional parabolic equation[J]. IEEE Trans Antennas Propag, 2012, 60(4): 2138-2143. doi: 10.1109/TAP.2012.2186227
    [4] Leontovich M A, Fock V A. Solution of propagation of electromagnetic waves along the Earth's surface by the method of parabolic equations[J]. Journal of physics USSR, 1946, 10: 13-23.
    [5] Barrios A E. A terrain parabolic equation model for propagation in the troposphere[J]. IEEE Trans Antennas Propagat, 1994, 42(1): 90-98. doi: 10.1109/8.272306
    [6] Mikhailov M S, Malevich E S, Permyakovd V A. Modeling of radio-wave propagation in forest by the method of parabolic equation[J]. Int J Eng Technol, 2018, 7: 111-113.
    [7] Akbarpour R, Wsbster A R. Ray-tracing and parabolic equation methods in modeling of a tropospheric microwave link[J]. IEEE Trans Antennas Propagat, 2005, 53(11): 3785-3792. doi: 10.1109/TAP.2005.856355
    [8] Hardin R H, Tappert F D. Application of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equation[J]. Siam Rev, 1973, 15: 423-429.
    [9] Feng J, Zhou L, Xu X, et al. A hybrid TDPE/FDTD method for site-specific modeling of O2I radio wave propagation[J]. IEEE Antennas Wireless Propag Lett, 2018, 17(9): 1652-1655. doi: 10.1109/LAWP.2018.2861471
    [10] Wang D, Xi X, Zhou L, et al. Pulse parabolic equation method for Loran-C ASF prediction over irregular terrain[J]. IEEE Antennas Wireless Propag Lett, 2018, 17(1): 168-171. doi: 10.1109/LAWP.2017.2778736
    [11] Ergin D, Ozgur B A. Channel model for the surface ducts: Large-scale path-loss, delay spread, and AOA[J]. IEEE Trans Antenna Propag, 2015, 63(6): 2728-2738. doi: 10.1109/TAP.2015.2418788
    [12] Karimian A, Yardim C, Gerstoft P, et al. Multiple grazing angle sea clutter modeling[J]. IEEE Trans Antenna Propag, 2012, 60(9): 4408-4417. doi: 10.1109/TAP.2012.2207033
    [13] Ralph O S. Multiple emitter location and signal parameter estimation[J]. IEEE Trans Antenna Propag, 1986, 34(3): 276-280. doi: 10.1109/TAP.1986.1143830
    [14] Pillai S U, Kwon B H. Forward/backward spatial smoothing techniques for coherent signal identification[J]. IEEE Trans Acoust Speech Signal Process, 1989, 37(1): 8-15. doi: 10.1109/29.17496
    [15] Rogers L T, Hattan C P, Stapleton J K. Estimating evaporation duct heights from radar sea echo[J]. Radio Sci, 2000, 35(4): 955-966. doi: 10.1029/1999RS002275
  • 加载中
图(8)
计量
  • 文章访问数:  785
  • HTML全文浏览量:  248
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-23
  • 修回日期:  2019-07-07
  • 刊出日期:  2019-10-15

目录

    /

    返回文章
    返回