留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

紫外熔石英元件高精度低缺陷控形控性制造技术研究进展

石峰 舒勇 宋辞 田野 铁贵鹏 薛帅 肖航

石峰, 舒勇, 宋辞, 等. 紫外熔石英元件高精度低缺陷控形控性制造技术研究进展[J]. 强激光与粒子束, 2020, 32: 032002. doi: 10.11884/HPLPB202032.190399
引用本文: 石峰, 舒勇, 宋辞, 等. 紫外熔石英元件高精度低缺陷控形控性制造技术研究进展[J]. 强激光与粒子束, 2020, 32: 032002. doi: 10.11884/HPLPB202032.190399
Shi Feng, Shu Yong, Song Ci, et al. Advances in shape controllable and property controllable manufacturing technology for ultraviolet fused silica components with high precision and few defects[J]. High Power Laser and Particle Beams, 2020, 32: 032002. doi: 10.11884/HPLPB202032.190399
Citation: Shi Feng, Shu Yong, Song Ci, et al. Advances in shape controllable and property controllable manufacturing technology for ultraviolet fused silica components with high precision and few defects[J]. High Power Laser and Particle Beams, 2020, 32: 032002. doi: 10.11884/HPLPB202032.190399

紫外熔石英元件高精度低缺陷控形控性制造技术研究进展

doi: 10.11884/HPLPB202032.190399
基金项目: 国家自然科学基金重点项目(51835013);国家自然科学基金联合基金项目(U1801259);国家自然科学基金面上项目(51675526)
详细信息
    作者简介:

    石 峰(1980—),男,工学博士,研究员,博士生导师,从事超精密加工和先进光学制造领域的教学科研工作;sf.wind@yahoo.com

  • 中图分类号: TH161

Advances in shape controllable and property controllable manufacturing technology for ultraviolet fused silica components with high precision and few defects

  • 摘要: 传统的紫外熔石英元件加工方法本身会引入各类制造缺陷,需要后期加工来消除前期加工带来的缺陷,限制了熔石英元件的加工 质量和加工效率。针对这些问题,课题组提出了采用磁流变、离子束、保形光顺和流体动压抛光等可控柔体加工技术提升熔石英元件的加工效果,并开展了相关研究。主要介绍了课题组在关键技术上取得的重要进展,包括亚纳米精度表面控形制造技术、纳米精度本征表面控性生成方法、熔石英元件高精度低缺陷组合工艺与设备等一系列关键技术。通过探讨关键技术及其发展现状,为未来紫外熔石英元件高精度低缺陷制造技术的发展提供参考。
  • 图  1  三轴系统及加工后表面质量

    Figure  1.  Three axis IBF machine and IBF polished surface

    图  2  五轴系统及加工后表面质量

    Figure  2.  Five axis IBF machine and IBF polished surface

    图  3  材料添加与去除结合抛光方法

    Figure  3.  Combined polishing method of material adding and removal

    图  4  流体动压加工原理模型与加工效果

    Figure  4.  Schematic of hydrodynamic effect polishing and polished surface

    图  5  样件激光损伤阈值测试结果

    Figure  5.  Laser induced damage threshold of sample 1# and 2#

    图  6  广义压强分布模型与实验验证

    Figure  6.  Generalized numerical pressure distribution model and experimental verification

    图  7  初始面形、光顺后面形和MRF加工后面形的PSD数据

    Figure  7.  Power spectrum density analysis of the data in three manufacture stages: initial data, smoothed data and finished data

    图  8  处于不同域的磁流变去除函数

    Figure  8.  MRF removal functions in different regions

    图  9  离子束清洗过程示意图

    Figure  9.  Ion beam etching process

    图  10  化学结构缺陷去除示意图

    Figure  10.  Removing process of chemical defects

    图  11  熔石英元件高精度低缺陷组合工艺流程

    Figure  11.  High efficiency low damage combined machining technology of fused silica

    图  12  系列磁流变加工机床

    Figure  12.  Magnetorheological finishing machines

    图  13  系列离子束加工机床

    Figure  13.  Ion beam figuring machines

  • [1] Wang Ganchang. Suggestion of neutron generation with powerful lasers[J]. Chinese Journal of Lasers, 1987, 22(11): 7.
    [2] Hogan W J, Moses E I, Warner B E, et al. The National Ignition Facility[J]. Optical Engineering, 2002, 43(12): 21-51.
    [3] Zheng Wanguo, Zhang Xiaomin, Wei Xiaofeng, et al. Status of the SG-Ⅲ solid-state laser facility[C]//The Fifth International Conference on Inertial Fusion Sciences and Applications, 2008, 112: 032009.
    [4] Campbell J H, Hawley-Fedder R A, Stolz C J, et al. NIF optical materials and fabrication technologies: an overview[C]//Proc of SPIE. 2004, 5341: 1-18.
    [5] Baisden P A, Atherton L J, Hawley RA, et al. Large optics for the National Ignition Facility[J]. Fusion Science & Technology, 2016, 69(1): 614-620.
    [6] Suratwala T I, Miller P E, Bude J D, et al. HF based etching processes for improving laser damage resistance of fused silica optical surfaces[J]. Journal of the American Ceramic Society, 2011, 94(2): 416-428. doi: 10.1111/j.1551-2916.2010.04112.x
    [7] Wood R M. Laser-induced damage of optical materials[M].London: Institute of Physics Publishing, 2003.
    [8] Liao Wenlin, Dai Yifan, Xie Xuhui, et al. Morphology evolution of fused silica surface during ion beam figuring of high-slope optical components[J]. Applied Optics, 2013, 52(16): 3719-3725. doi: 10.1364/AO.52.003719
    [9] Liao Wenlin, Dai Yifan, Xie Xuhui. Nanopatterning of optical surfaces during low-energy ion beam sputtering[J]. Optical Engineering, 2014, 53: 065108.
    [10] Liao Wenlin, Dai Yifan, Xie Xuhui, et al. Deterministic ion beam material adding technology for high-precision optical surfaces[J]. Applied Optics, 2013, 52(6): 1302-1309. doi: 10.1364/AO.52.001302
    [11] Liao Wenlin, Dai Yifan, Xie Xuhui, et al. Combined figuring technology for high-precision optical surfaces using a deterministic ion beam material adding and removal method[J]. Optical Engineering, 2013, 52: 010503.
    [12] Peng Wenqiang, Guan Chaoliang, Li Shengyi. Ultrasmooth surface polishing based on the hydrodynamic effect[J]. Applied Optics, 2013, 52(25): 6411-6416. doi: 10.1364/AO.52.006411
    [13] Peng Wenqiang, Li Shengyi, Guan Chaoliang, et al. Ultra-precision optical surface fabricated by hydrodynamic effect polishing combined with magnetorheological finishing[J]. Optik, 2018, 156: 374-383. doi: 10.1016/j.ijleo.2017.11.055
    [14] Peng Wenqiang, Guan Chaoliang, Li Shengyi, et al. The improvement of laser induced damage resistance of optical workpiece surface by hydrodynamic effect polishing[C]//Proc of SPIE. 2016: 968315.
    [15] Nie Xuqing, Li Shengyi, Shi Feng, et al. Generalized numerical pressure distribution model for smoothing polishing of irregular midspatial frequency errors[J]. Applied Optics, 2014, 53(6): 1020-1027. doi: 10.1364/AO.53.001020
    [16] Nie Xuqing, Li Shengyi, Hu Hao, et al. Control of mid-spatial frequency errors considering the pad groove feature in smoothing polishing process[J]. Applied Optics, 2014, 53(28): 6332-6339. doi: 10.1364/AO.53.006332
    [17] Nie Xuqing, Li Shengyi, Song Ci, et al. Combined fabrication process for high-precision aspheric surface based on smoothing polishing and magnetorheological finishing[C]//Proc of SPIE. 2014: 928111.
    [18] Shi Feng, Shu Yong, Dai Yifan, et al. Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics[J]. Optical Engineering, 2013, 52: 075104.
    [19] Shi Feng, Tian Ye, Peng Xiaoqiang, et al. Combined technique of elastic magnetorheological finishing and HF etching for high-efficiency improving of the laser-induced damage threshold of fused silica optics[J]. Applied Optics, 2014, 53(5): 598-604.
    [20] Shi Feng, Zhong Yaoyu, Dai Yifan, et al. Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica[J]. Optics Express, 2016, 24(18): 20842-20854. doi: 10.1364/OE.24.020842
    [21] Xu Mingjin, Dai Yifan, Zhou Lin, et al. Investigation of surface characteristics evolution and laser damage performance of fused silica during ion-beam sputtering[J]. Optical Materials, 2016, 58: 151-157. doi: 10.1016/j.optmat.2016.03.034
    [22] Xu Mingjin, Shi Feng, Zhou Lin, et al. Investigation of laser-induced damage threshold improvement mechanism during ion beam sputtering of fused silica[J]. Optics Express, 2017, 25(23): 29260-29271. doi: 10.1364/OE.25.029260
  • 加载中
图(13)
计量
  • 文章访问数:  1293
  • HTML全文浏览量:  460
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-10-11
  • 修回日期:  2019-12-12
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回