留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金属表面镀高分子膜对真空击穿阈值的影响

胡祥刚 苏建仓 张瑜 朱晓欣 李小泽 谭维兵 张立刚

胡祥刚, 苏建仓, 张瑜, 等. 金属表面镀高分子膜对真空击穿阈值的影响[J]. 强激光与粒子束, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439
引用本文: 胡祥刚, 苏建仓, 张瑜, 等. 金属表面镀高分子膜对真空击穿阈值的影响[J]. 强激光与粒子束, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439
Hu Xianggang, Su Jiancang, Zhang Yu, et al. Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown[J]. High Power Laser and Particle Beams, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439
Citation: Hu Xianggang, Su Jiancang, Zhang Yu, et al. Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown[J]. High Power Laser and Particle Beams, 2020, 32: 075002. doi: 10.11884/HPLPB202032.190439

金属表面镀高分子膜对真空击穿阈值的影响

doi: 10.11884/HPLPB202032.190439
基金项目: 高功率微波技术重点实验室课题
详细信息
    作者简介:

    胡祥刚(1987—),男,硕士,助理研究员,主要从事高功率微波相关领域的研究工作;huxianggang@nint.ac.cn

  • 中图分类号: O461

Influence of metal surface electrodeposited polymer film on threshold of vacuum breakdown

  • 摘要: 探索提高金属表面真空击穿阈值的方法,对脉冲功率技术的发展和应用具有重要意义。在金属表面电子发射理论分析的基础上,采用有限元法计算阴极杆表面电场随二极管电压的变化规律,设计了实验系统,并开展了实验研究。实验对比了在脉宽约30 ns、阴极杆与阳极筒间隙12 mm时,钛合金TC4阴极杆在不同种类高分子膜(膜厚30~60 μm)下真空击穿阈值的变化情况。在表面粗糙度Rz(轮廓最大高度)为0.8 μm的TC4阴极杆表面分别镀环氧树脂膜和丙烯酸膜,实验结果表明,镀丙烯酸膜阴极杆的击穿阈值约505 kV/cm,相对于不镀膜阴极杆,击穿场强提高了约20.6%;在表面粗糙度Rz为0.2 μm的TC4阴极杆表面分别镀聚酰亚胺膜和聚醚醚酮膜,实验结果表明,镀聚酰亚胺膜阴极杆的击穿阈值为584 kV/cm,相对于不镀膜阴极杆,击穿场强提高了约28.1%。因此,在金属表面镀丙烯酸膜、聚酰亚胺膜可以有效提高金属表面的真空击穿阈值。
  • 图  1  同轴结构真空间隙模型

    Figure  1.  Vacuum gap model of coaxial structure

    图  2  阴极杆表面电子分布

    Figure  2.  Surface electron distribution of cathode rod

    图  3  实验装置结构图

    Figure  3.  Structure diagram of experimental device

    图  4  二极管电压400 kV时电场分布

    Figure  4.  Electric field distribution at diode voltage 400 kV

    图  5  阴极杆表面最大电场随二极管电压变化规律

    Figure  5.  Maximum electric field on the cathode rod surface varies with the diode voltage

    图  6  阴极杆镀环氧树脂膜

    Figure  6.  Cathode rod with epoxy coating

    图  7  实验装置

    Figure  7.  Experimental device

    图  8  击穿前电压电流波形

    Figure  8.  Voltage and current waveforms before breakdown

    图  9  击穿后电压电流波形

    Figure  9.  Breakdown voltage and current waveforms

    图  10  阴极杆镀ER膜和AC膜的EsEbi

    Figure  10.  Es and Ebi of cathode rod (Rz=0.8 µm) with ER film and AC film

    图  11  阴极杆镀PI膜和PEEK膜的EsEbi

    Figure  11.  Es and Ebi of cathode rod (Rz=0.2 µm) with PI film and PEEK film

  • [1] Rozanova N, Granovsky V L. On the initiation of electrical breakdown of a high voltage gap[J]. Sov Phys Tech Phys, 1956, 1: 471-478.
    [2] Bouchard K G. Vacuum breakdown voltages of dispersion-strengthened copper vs oxygen-free, high-conductivity copper[J]. Journal of Vacuum Science and Technology, 1970, 7(2): 358-360. doi: 10.1116/1.1315857
    [3] Spolaore P, Bisoffi G, Cervellera F, et al. The large gap case for HV insulation in vacuum[J]. IEEE Trans Dielectrics and Electrical Insulation, 1997, 4(4): 389-393. doi: 10.1109/94.625353
    [4] 米夏兹. 真空放电物理和高功率脉冲技术[M]. 北京: 国防工业出版社, 2007.

    Mesyats. Vacuum discharge and high power pulse technology[M]. Beijing: National Defense Industry Press, 2007
    [5] 左应红, 王建国, 范如玉. 二极管间隙距离对场致发射过程中空间电荷效应的影响[J]. 物理学报, 2012, 61:215202. (Zuo Yinghong, Wang Jianguo, Fan Ruyu. Influence of diode gap distance on space charge effects in field emission[J]. Acta Physica Sinica, 2012, 61: 215202 doi: 10.7498/aps.61.215202
    [6] 左应红. 场致爆炸电子发射的理论分析与数值模拟[D]. 北京: 清华大学. 2014.

    Zuo Yinghong. Theory analysis and numerical simulation of field-induced explosive electron emission[D]. Beijing: Tsinghua University, 2014
    [7] Zhang Yingyao, Xu Xinye, Jin Lijun, et al. Fractal-based electric field enhancement modeling of vacuum gap electrodes[J]. IEEE Trans Dielectrics and Electrical Insulation, 2017, 24(3): 1957-1963. doi: 10.1109/TDEI.2017.006364
    [8] Almaksour K, Kirkpatrick M J, Odic E, et al. Cathode surface morphology effects on field emission: vacuum breakdown creation of field emitters[J]. IEEE Trans Plasma Science, 2014, 42(10): 2582-2583. doi: 10.1109/TPS.2014.2319393
    [9] 黄子平, 何佳龙, 陈思富, 等. 高压多脉冲真空间隙击穿实验研究[J]. 强激光与粒子束, 2008, 20(11):1903-1907. (Huang Ziping, He Jialong, Chen Sifu, et al. Experimental research for vacuum gap breakdown in high voltage multi-pulse[J]. High Power Laser and Particle Beams, 2008, 20(11): 1903-1907
    [10] 孙钧, 刘国治, 林郁正, 等. 阴极金属微凸起电场增强因子数值模拟[J]. 强激光与粒子束, 2005, 17(8):1183-1186. (Sun Jun, Liu Guozhi, Lin Yuzheng, et al. Numerical simulation of electric field enhancement factor of metallic microprotrusion[J]. High Power Laser and Particle Beams, 2005, 17(8): 1183-1186
    [11] 张余川, 孙钧, 邵浩, 等. 抑制表面场增强提高相对论返波管功率容量[J]. 强激光与粒子束, 2016, 28:033019. (Zhang Yuchuan, Sun Jun, Shao Hao, et al. Suppression of surface field enhancement to improve power capacity of RBWO[J]. High Power Laser and Particle Beams, 2016, 28: 033019 doi: 10.11884/HPLPB201628.033019
    [12] Zhang Yu, Su Jiancang, Qiu Xudong, et al. The effects of cathode electrodeposited polymer film on the long vacuum gap breakdown[J]. EPJ Applied Physics, 2018, 82: 21301. doi: 10.1051/epjap/2018170324
    [13] Miller R B. 强流带电粒子束物理学导论[M]. 北京: 原子能出版社, 1990.

    Miller R. B. Introduction to the physics of strongly charged particle beams[M]. Beijing: Atomic Energy Press, 1990
    [14] 傅慈海. 物理电子技术原理[M]. 广州: 华南理工大学出版社, 1991.

    Fu Cihai. Physical electronic technical principles[M]. Guangzhou: South China University of Technology Press, 1991
    [15] 俞永波, 杨兰兰, 屠彦. 电极表面形态对真空击穿特性的影响[J]. 电子器件, 2014, 37(3):385-389. (Yu Yongbo, Yang Lanlan, Tu Yan. Investigation of the electrodes’ surface to vacuum breakdown[J]. Chinese Journal of Electron Devices, 2014, 37(3): 385-389 doi: 10.3969/j.issn.1005-9490.2014.03.002
  • 加载中
图(11)
计量
  • 文章访问数:  1268
  • HTML全文浏览量:  475
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-28
  • 修回日期:  2020-04-20
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回