留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多路Marx并联高压脉冲电源研究

饶俊峰 洪凌锋 郭龙跃 李孜 姜松

饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32: 055001. doi: 10.11884/HPLPB202032.190472
引用本文: 饶俊峰, 洪凌锋, 郭龙跃, 等. 多路Marx并联高压脉冲电源研究[J]. 强激光与粒子束, 2020, 32: 055001. doi: 10.11884/HPLPB202032.190472
Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001. doi: 10.11884/HPLPB202032.190472
Citation: Rao Junfeng, Hong Lingfeng, Guo Longyue, et al. Investigation of high voltage pulse generators with Marx generators in parallel[J]. High Power Laser and Particle Beams, 2020, 32: 055001. doi: 10.11884/HPLPB202032.190472

多路Marx并联高压脉冲电源研究

doi: 10.11884/HPLPB202032.190472
基金项目: 国家自然科学基金青年基金项目(51707122);上海市青年科技英才扬帆计划项目(19YF1435000)
详细信息
    作者简介:

    饶俊峰(1985—),男,博士,副教授,主要从事全固态纳秒高压脉冲发生器、大功率直流充电技术和低温等离子体应用等研究工作;raojunfeng1985@163.com

  • 中图分类号: TM832

Investigation of high voltage pulse generators with Marx generators in parallel

  • 摘要:

    脉冲功率技术在工业和生物医学领域有着广泛的应用,很多应用场合要求输出数百安培的高压脉冲。固态Marx发生器虽已研究多年,但是被广泛采用直插封装的IGBT和MOSFET功率半导体开关管的额定电流通常都低于100 A,无法满足低阻抗负载的应用需求。为提高输出脉冲电流幅值,提出两种多路Marx发生器并联的脉冲电源的拓扑结构,第一种方案采用多路Marx发生器直接并联,第二种是共用一组充电开关管的多路Marx发生器并联。由FPGA提供充放电控制信号,采用串芯磁环隔离驱动方案实现带负压偏置的同步驱动,主电路选用开通速度快、通流能力强的IGBT为主开关的半桥式固态方波Marx电路。实验结果表明,6路16级Marx直接并联的脉冲发生器能输出重频100 Hz高压方波脉冲幅值可达10 kV,在30 Ω负载侧输出峰值电流可达300 A,上升时间230 ns。共用充电开关管的6路4级Marx并联发生器在5 Ω电阻负载上的输出电流峰值可达300 A,最大输出电流可达460 A,上升时间272 ns。表明多路Marx发生器并联可以有效地减小系统内阻,提高系统带载能力;改进后的并联方案实现大电流脉冲输出的同时,所采用的开关管数量减小近一半,提高了系统的抗干扰能力的同时,降低了脉冲电源的成本;且增加级间并联导线可进一步改善均流效果。

  • 图  1  多路Marx发生器直接并联主电路

    Figure  1.  Power circuit of many Marx generators connected in parallel directly

    图  2  共用充电开关管的多路Marx发生器并联主电路

    Figure  2.  Power circuit of many Marx generators in parallel sharing charging switches

    图  3  空载输出电压波形

    Figure  3.  Voltage waveform with open circuit

    图  4  重复频率100 Hz时的电压波形

    Figure  4.  Voltage waveform at the frequency of 100 Hz

    图  5  阻性负载上总电流仿真波形

    Figure  5.  Simulating waveform of total current through resistive load

    图  6  阻性负载上总电流

    Figure  6.  Waveform of total current through resistive load (directly parallelled)

    图  7  不同Marx支路的输出电流波形

    Figure  7.  Waveforms of current in various branches (directly parallelled)

    图  8  阻性负载上总电流

    Figure  8.  Waveform of total current through resistive load (sharing charging switches)

    图  9  不同Marx支路的输出电流波形

    Figure  9.  Waveforms of current in various branches (sharing charging switches)

    图  10  级级并联后每一路Marx输出电流

    Figure  10.  Current waveforms in different branches with stage-stage parallel connection

    图  11  相同条件下负载输出最大电流

    Figure  11.  Waveform of maximum current through resistive load

    图  12  3路Marx并联与单路Marx在不同负载上的输出电压

    Figure  12.  Voltage amplitudes over different resistive loads by Marx generators with 3 branches in parallel or single 8-stage Marx generator

  • [1] Redondo L M, Silva J F. Repetitive high-voltage solid-state Marx modulator design for various load conditions[J]. IEEE Trans Plasma Science, 2009, 37(8): 1632-1637. doi: 10.1109/TPS.2009.2023221
    [2] Liu Kefu, Qiu Jian, Wu Yifan, et al. An all solid-state pulsed power generator based on Marx generator[C]//Proc of 16th IEEE Int Pulsed Power Conf. 2007: 720-723.
    [3] 刘克富. 固态Marx发生器研究进展[J]. 高电压技术, 2015, 41(6):1781-1787. (Liu Kefu. Research progress in solid-state Marx generators[J]. High Voltage Engineering, 2015, 41(6): 1781-1787
    [4] 江伟华. 基于固态器件的高重频脉冲功率技术[J]. 强激光与粒子束, 2010, 22(3):561-564. (Jiang Weihua. High repetition-rate pulsed power generation using solid-state switches[J]. High Power Laser and Particle Beams, 2010, 22(3): 561-564 doi: 10.3788/HPLPB20102203.0561
    [5] Wei Linsheng, Yuan D K, Zhang Y F, et al. Experimental and theoretical study of ozone generation in pulsed positive dielectric barrier discharge[J]. Vacuum, 2014, 104(2): 61-64.
    [6] 李黎, 彭明洋, 腾云, 等. 大气压重频纳秒脉冲放电对尼龙纤维的表面改性[J]. 高电压技术, 2016, 42(3):753-761. (Li Li, Peng Mingyang, Teng Yun, et al. Surface modificantion of nylon fiber by atmospheric pressure and repeated nanosecond pulse discharge[J]. High Voltage Engineering, 2016, 42(3): 753-761
    [7] Lowke J J. Plasma predictions: past, present and future[J]. Plasma Sources Science & Technology, 2013, 22(2): 023002.
    [8] Katja F, Hartmut S, Thomas V W, et al. High rate etching of polymers by means of an atmospheric pressure plasma jet[J]. Plasma Processes & Polymers, 2011, 8(1): 51-58.
    [9] 章程, 邵涛, 于洋, 等. 纳秒脉冲介质阻挡放电特性及其聚合物材料表面改性[J]. 电工技术学报, 2010, 25(5):31-37. (Zhang Cheng, Shao Tao, Yu Yang, et al. Nanosecond pulse dielectric barrier discharge characteristics and surface modification of polymer materials[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 31-37
    [10] Krishnaswamy P, Kuthi A, Vernier P T, et al. Compact subnanosecond pulse genernator using avalanche transistors for cell electroperturbation studies[J]. IEEE Trans Dielectrics and Electrical Insulation, 2007, 14(4): 873-877. doi: 10.1109/TDEI.2007.4286518
    [11] Smulders E H W M, Van Heeeh B E J M, Van Passen S S V B. Pulsed power corona discharges for air pollution control[J]. IEEE Trans Plasma Science, 1998, 26(5): 1476-1484. doi: 10.1109/27.736042
    [12] 曹鹤飞, 孙永卫, 原青云, 等. 航天器背面接地介质材料等离子体充电研究[J]. 强激光与粒子束, 2015, 27:103204. (Cao Hefei, Sun Yongwei, Yuan Qingyun, et al. Research on surface charging of back grounded dielectric material of spacecraft[J]. High Power Laser and Particle Beams, 2015, 27: 103204
    [13] 方兴东, 关志成, 王黎明. 高压脉冲电在水处理中的应用及发展[J]. 高电压技术, 2000, 26(1):29-31. (Fang Xingdong, Guan Zhicheng, Wang Liming. Research on treatment of wastewater by high voltage pulse discharge[J]. High Voltage Engineering, 2000, 26(1): 29-31 doi: 10.3969/j.issn.1003-6520.2000.01.012
    [14] Belehradek M, Domenge C. Electrochemotherapy, a new antitumor treatment. First clinical phase I-II trial[J]. Cancer, 1993, 72(12): 3694-3700. doi: 10.1002/1097-0142(19931215)72:12<3694::AID-CNCR2820721222>3.0.CO;2-2
    [15] Li Zi, Liu Haotian, Rao Junfeng, et al. A novel drive circuit with overcurrent protection for solid state pulse generators[J]. IEEE Trans Dielectrics and Electrical Insulation, 2019, 26(2): 361-366. doi: 10.1109/TDEI.2018.007701
    [16] Zhou Ziwei, Li Zi, Rao Junfeng, et al. A high-performance drive circuit for all solid-stage Marx generator[J]. IEEE Trans Plasma Science, 2016, 44(11): 2779-2784. doi: 10.1109/TPS.2016.2577704
    [17] Barnes M J, Wait G D, Figley C B. A FET based frequency and duty factor agile 6 kV pulse generator[C]//Twenty-First International Power Modulator Symposium Conference. 1994: 97-100.
    [18] Wang Yifan, Liu Kefu, Qiu Jian, et al. A stage-stage paralleled topology of all-solid-stage Marx generator for high current[J]. IEEE Trans Plasma Science, 2019, 47(10): 4488-4494. doi: 10.1109/TPS.2019.2914313
  • 加载中
图(12)
计量
  • 文章访问数:  1761
  • HTML全文浏览量:  587
  • PDF下载量:  234
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-12-17
  • 修回日期:  2020-02-19
  • 刊出日期:  2020-02-10

目录

    /

    返回文章
    返回