留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于混合锁模的耗散孤子掺铒光纤激光器

丰兴理 赵磊 张昊宇 邓国亮 汪莎 冯国英 周寿桓 马裕宽

丰兴理, 赵磊, 张昊宇, 等. 基于混合锁模的耗散孤子掺铒光纤激光器[J]. 强激光与粒子束, 2020, 32: 011017. doi: 10.11884/HPLPB202032.190481
引用本文: 丰兴理, 赵磊, 张昊宇, 等. 基于混合锁模的耗散孤子掺铒光纤激光器[J]. 强激光与粒子束, 2020, 32: 011017. doi: 10.11884/HPLPB202032.190481
Feng Xingli, Zhao Lei, Zhang Haoyu, et al. Dissipative soliton erbium-doped fiber laser based on hybrid mode-locking[J]. High Power Laser and Particle Beams, 2020, 32: 011017. doi: 10.11884/HPLPB202032.190481
Citation: Feng Xingli, Zhao Lei, Zhang Haoyu, et al. Dissipative soliton erbium-doped fiber laser based on hybrid mode-locking[J]. High Power Laser and Particle Beams, 2020, 32: 011017. doi: 10.11884/HPLPB202032.190481

基于混合锁模的耗散孤子掺铒光纤激光器

doi: 10.11884/HPLPB202032.190481
基金项目: 国家自然科学基金项目(61705149)
详细信息
    作者简介:

    丰兴理(1993—),男,硕士研究生,主要研究方向为锁模脉冲光纤激光器;775347352@qq.com

    通讯作者:

    赵 磊(1984—),男,副研究员,硕士,主要研究方向为光纤激光器;38639752@qq.com

  • 中图分类号: TN248

Dissipative soliton erbium-doped fiber laser based on hybrid mode-locking

  • 摘要: 从一种简单、全光纤结构的混合被动锁模掺铒光纤激光器中,得到了高稳定性、宽光谱的耗散孤子。激光器结合了半导体可饱和吸收体和非线性偏振旋转两种锁模机制,并运行在正常色散区内;通过色散管理,激光器能产生光谱宽度39.1 nm和时域宽度178 fs的孤子脉冲序列。激光输出的中心波长为1.55 μm,重复频率约为34.3 MHz,单脉冲能量在0.33 nJ左右。与此同时,激光器的斜效率也约等于15.5%;室温工作下,激光器能实现自启动锁模,且运行在稳定单脉冲输出状态的时长在15 h以上。
  • 图  1  混合锁模光纤激光器结构示意图

    Figure  1.  Configuration of the hybrid mode-locking fiber laser

    图  2  输出光谱随净色散的演变

    Figure  2.  Output optical spectrum evolution as a function of the net cavity dispersion

    图  3  腔净色散为0.063 ps2时,激光器特性随泵浦功率增加的变化

    Figure  3.  Evolution of laser performance at 0.063 ps2 estimated net dispersion with the increase of pump power

    图  4  泵浦功率为730 mW时激光器的特性

    Figure  4.  Performance of the laser at pump power of 730 mW

  • [1] Ferman M E, Hart I. Ultrafast fiber laser technology[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(1): 191-206. doi: 10.1109/JSTQE.2008.2010246
    [2] 林宏奂, 隋展, 李明中, 等. 被动锁模Yb3+光纤环形腔激光器的研究[J]. 强激光与粒子束, 2006, 18(5):123-126. (Lin Honghuan, Sui Zhan, Li Mingzhong, et al. Passive mode-locked Yb3+-doped fiber ring laser[J]. High Power Laser and Particle Beams, 2006, 18(5): 123-126
    [3] Liu X M, Wang T, Shu C, et al. Passively harmonic mode-locked erbium-doped fiber soliton laser with a nonlinear polarization rotation[J]. Laser Physics, 2008, 18(11): 1357-1361. doi: 10.1134/S1054660X08110285
    [4] 李超, 朱启华, 赵磊, 等. 中红外超连续谱在氟化物光纤中的产生[J]. 强激光与粒子束, 2014, 26(10):53-55. (Li Chao, Zhu Qihua, Zhao Lei, et al. Mid-IR supercontinuum generation in fluoride fiber[J]. High Power Laser and Particle Beams, 2014, 26(10): 53-55
    [5] Brian R, Washburn, Scott A, et al. Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared[J]. Optics Letters, 2004, 29(3): 250-252. doi: 10.1364/OL.29.000250
    [6] Hochrein T, Wilk R, Mei M, et al. Optical sampling by laser cavity tuning[J]. Optics Express, 2010, 18(2): 1613-1617. doi: 10.1364/OE.18.001613
    [7] Nelson L E, Jones D J, Tamura K, et al. Ultrashort-pulse fiber ring lasers[J]. Applied Physics B (Lasers and Optics), 1997, 65(2): 277-294. doi: 10.1007/s003400050273
    [8] Liu Xueming. Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion[J]. Optics Express, 2011, 19(7): 5874-5887. doi: 10.1364/OE.19.005874
    [9] Zhao L M, Tang D Y, Zhang H, et al. Dynamics of gain-guided solitons in an all-normal-dispersion fiber laser[J]. Optics Letters, 2007, 32(13): 1806-1808. doi: 10.1364/OL.32.001806
    [10] Grelu P, Akhmediew N. Dissipative solitons for mode-locked lasers[J]. Nature Photonics, 2012, 6(2): 84-92. doi: 10.1038/nphoton.2011.345
    [11] Bulend O, Baumgartl M, Limpert J, et al. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber lasers[J]. Optics Letters, 2009, 34(10): 1585-1587. doi: 10.1364/OL.34.001585
    [12] Kieu K, Renniger W H, Chong A, et al. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser[J]. Optics Letters, 2009, 34(5): 593-595. doi: 10.1364/OL.34.000593
    [13] Ackemann T, Firth W J. Dissipative solitons in pattern-forming nonlinear optical systems: cavity solitons and feedback solitons[M]. Berlin: Springer, 2005: 55-100.
    [14] Akhmediev N, Ankiewicz A. Dissipative solitons: from optics to biology and medicine[M]. Berlin: Springer Science & Business Media, 2008.
    [15] Xu Jia, Wu Sida, Li Huihui, et al. Dissipative soliton generation from a graphene oxide mode-locked Er-doped fiber laser[J]. Optics Express, 2012, 20(21): 23653-23658. doi: 10.1364/OE.20.023653
    [16] Liu Xianglian, Wang Yonggang, Li Xiaohui, et al. The generation of dissipative solitons in an all-fiber passively mode-locked laser based on semiconduct type of carbon nanotubes absorber[J]. Optical Fiber Technology, 2013, 19(3): 200-205. doi: 10.1016/j.yofte.2013.01.007
    [17] Cabasse A, Martel G, Oudar J L, et al. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror[J]. Optics Express, 2009, 17(12): 9537-9542. doi: 10.1364/OE.17.009537
    [18] Amelie C, Gaponov D, Ndao K, et al. 130 mW average power, 46 nJ pulse energy, 102 ps pulse duration from an Er3+ fiber oscillator passively mode locked by a resonant saturable absorber mirror[J]. Optics Letters, 2011, 36(14): 2620-2622. doi: 10.1364/OL.36.002620
    [19] Wang Hongjie, Kotov L V, Gaponov D A, et al. Dissipative soliton generation and amplification in erbium-doped fibers operating at 1.55 μm[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 283-289. doi: 10.1109/JSTQE.2014.2308394
    [20] Haxsen F, Wandt D, Morgner U, et al. Monotonically chirped pulse evolution in an ultrashort pulse thulium-doped fiber laser[J]. Optics Letters, 2012, 37(6): 1014-1016. doi: 10.1364/OL.37.001014
    [21] Gumenyuk R, Vartiainen I, Tuovinen H, et al. Dissipative dispersion-managed soliton 2 μm thulium/holmium fiber laser[J]. Optics Letters, 2011, 36(5): 609-611. doi: 10.1364/OL.36.000609
    [22] Huang Chongyuan, Wang Cong, Shang Wei, et al. Developing high energy dissipative soliton fiber lasers at 2 micron[J]. Scientific Reports, 2015, 5: 13680-13684. doi: 10.1038/srep13680
    [23] Zhao L M, Tang D Y, Wu J, et al. Gain-guided soliton in a positive group-dispersion fiber laser[J]. Optics Letters, 2006, 31(12): 1788-1790. doi: 10.1364/OL.31.001788
    [24] Wu X, Tang D Y, Zhang H, et al. Dissipative soliton resonance in an all-normal dispersion erbium-doped fiber laser[J]. Optics Express, 2009, 17(7): 5580-5584. doi: 10.1364/OE.17.005580
    [25] Yang Jinhui, Guo Chunyu, Ruan Shuangchen, et al. Observation of dissipative soliton resonance in a net-normal dispersion figure-of-eight fiber laser[J]. IEEE Photonics Journal, 2013, 5(3): 1500806. doi: 10.1109/JPHOT.2013.2265982
    [26] Kim S, Kim Y, Park J, et al. Hybrid mode-locked Er-doped fiber femtosecond oscillator with 156 mW output power[J]. Optics Express, 2012, 20(14): 15054-15060. doi: 10.1364/OE.20.015054
    [27] Li X, Wu M, Zou W, et al. Purified dissipative solitons with a rectangle spectrum from a hybrid mode-locked fiber laser[J]. IEEE Photonics Technology Letters, 2017, 29(19): 1635-1638. doi: 10.1109/LPT.2017.2740718
    [28] Chong A, Buckley J, Renninger W, et al. All-normal-dispersion femtosecond fiber laser[J]. Optics Express, 2006, 14(21): 10095-10100. doi: 10.1364/OE.14.010095
    [29] Zhang Zuxing, Dai Guoxing. All-normal-dispersion dissipative soliton ytterbium fiber laser without dispersion compensation and additional filter[J]. IEEE Photonics Journal, 2011, 3(6): 1023-1029. doi: 10.1109/JPHOT.2011.2170057
    [30] Meng Yichang, Niang A, Guesmi K, et al. 1.61 μm high-order passive harmonic mode locking in a fiber laser based on graphene saturable absorber[J]. Optics Express, 2014, 22(24): 29921-29929. doi: 10.1364/OE.22.029921
  • 加载中
图(4)
计量
  • 文章访问数:  1353
  • HTML全文浏览量:  576
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-23
  • 修回日期:  2019-12-31
  • 刊出日期:  2019-12-26

目录

    /

    返回文章
    返回