留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于互耦补偿策略的IFFT算法及其应用

浦宣 程友峰 谢少毅 杨丹 廖成

浦宣, 程友峰, 谢少毅, 等. 基于互耦补偿策略的IFFT算法及其应用[J]. 强激光与粒子束, 2020, 32: 063005. doi: 10.11884/HPLPB202032.200014
引用本文: 浦宣, 程友峰, 谢少毅, 等. 基于互耦补偿策略的IFFT算法及其应用[J]. 强激光与粒子束, 2020, 32: 063005. doi: 10.11884/HPLPB202032.200014
Pu Xuan, Cheng Youfeng, Xie Shaoyi, et al. Iterative fast Fourier transform algorithm based on mutual coupling compensation strategy and its application[J]. High Power Laser and Particle Beams, 2020, 32: 063005. doi: 10.11884/HPLPB202032.200014
Citation: Pu Xuan, Cheng Youfeng, Xie Shaoyi, et al. Iterative fast Fourier transform algorithm based on mutual coupling compensation strategy and its application[J]. High Power Laser and Particle Beams, 2020, 32: 063005. doi: 10.11884/HPLPB202032.200014

基于互耦补偿策略的IFFT算法及其应用

doi: 10.11884/HPLPB202032.200014
基金项目: 国家自然科学基金项目(61901398,61731005,61771407,61801405);中央高校科创基金项目(A0920502051904-64)
详细信息
    作者简介:

    浦 宣(1994—),男,硕士研究生,从事阵列分析与综合研究;403544048@qq.com

    通讯作者:

    程友峰(1989—),男,博士,讲师,从事天线理论与技术以及阵列分析与综合研究;juvencheng@swjtu.edu.cn

  • 中图分类号: TN820

Iterative fast Fourier transform algorithm based on mutual coupling compensation strategy and its application

  • 摘要: 介绍了一种基于互耦补偿矩阵(MCCM)的迭代快速傅里叶变换(IFFT)技术,并将其应用于宽角度扫描相控阵的低旁瓣综合中。首先,在所提出的综合方法中,将互耦补偿矩阵引入到IFFT技术中以考虑阵元间的互耦效应,使考虑互耦的阵列远场重新满足方向图乘积原理。然后,提出了一款基片集成波导背腔结构的宽波束天线单元,该天线能够同时激励起TE110与TE210两种模式从而展宽其工作频带且具有宽波束性能,并且基于此单元分别建立了阵元数为35,75,100的宽角度扫描相控阵天线。最后,利用所提出的IFFT技术对这三个相控阵进行低旁瓣综合。与基于有源单元方向图遗传算法的对比结果表明,在−60°到60°的扫描范围内均能实现低旁瓣电平,并且IFFT优化算法具有更快的速度。
  • 图  1  子阵提取AEP示意图

    Figure  1.  Schematic diagram of subarray Active Element Pattern (AEP) extraction

    图  2  方向图计算结果对比

    Figure  2.  Comparison of calculation results of patterns

    图  3  基于互耦补偿矩阵的IFFT技术优化阵列流程图

    Figure  3.  Flow chart of IFFT algorithm based on the mutual coupling compensation matrix (MCCM)

    图  4  单元天线的结构示意图

    Figure  4.  Geometry of the element antenna

    图  5  天线单元的反射系数与xOz平面内的辐射方向图

    Figure  5.  Reflection coefficients and radiation pattern in xOz plane

    图  6  Uniform/IFFT/GA扫描波束

    Figure  6.  Uniform/IFFT/GA beam results scanning

    图  7  Uniform/IFFT/GA扫描波束

    Figure  7.  Uniform/IFFT/GA beam results scanning

    图  8  Uniform/IFFT/GA扫描波束

    Figure  8.  Uniform/IFFT/GA beam results scanning

    表  1  Uniform/GA/IFFT优化结果对比

    Table  1.   Comparison of Uniform/GA/IFFT optimization results

    scan angle/(°)PSLL/dBHPBW/(°)gain/dBipopulation iter_maxgen_max num_tryrequired time/s
    0(GA)−30.084.832.37200300288.15
    0(IFFT)−30.715.032.5010020013.65
    0(Uniform)−13.383.633.30nonenonenone
    30(GA)−30.335.332.22200300293.93
    30(IFFT)−30.155.832.2610020019.72
    30(Uniform)−12.614.232.99nonenonenone
    60(GA)−30.079.429.88200300282.18
    60(IFFT)−30.1010.328.9510020022.90
    60(Uniform)−11.437.330.64nonenonenone
    下载: 导出CSV

    表  2  Uniform/GA/IFFT优化结果对比

    Table  2.   Comparison of Uniform/GA / IFFT optimization results

    scan angle/(°)PSLL/dBHPBW/(°)gain/dBipopulation iter_maxgen_max num_tryrequired time/s
    0(GA)−30.302.135.85200300625
    0(IFFT)−30.682.437.0610050022.42
    0(Uniform)−13.31.736.61nonenonenone
    30(GA)−30.062.535.59200300600
    30(IFFT)−30.152.935.2410050032.64
    30(Uniform)−12.92.036.29nonenonenone
    60(GA)−30.024.533.35200300600
    60(IFFT)−30.085.331.9110050039.86
    60(Uniform)−12.293.434.04nonenonenone
    下载: 导出CSV

    表  3  Uniform/GA/IFFT优化结果对比

    Table  3.   Comparison of Uniform/GA / IFFT optimization results

    scan angle/(°)PSLL/dBHPBW/(°)gain/dBipopulation iter_maxgen_max num_tryrequired time/s
    0(GA)−30.121.537.11200300945
    0(IFFT)−30.741.838.461001 00034.40
    0(Uniform)−13.331.337.86nonenonenone
    30(GA)−30.041.936.76200300882
    30(IFFT)−30.132.136.561001 00053
    30(Uniform)−13.011.637.54nonenonenone
    60(GA)−30.003.234.65200300888
    60(IFFT)−30.113.933.231001 00059
    60(Uniform)−12.513.035.31nonenonenone
    下载: 导出CSV
  • [1] 程友峰. 具有宽角度扫描特性的非周期天线阵列研究[D]. 成都: 电子科技大学, 2018.

    Cheng Youfeng. Researches on aperiodic antenna arrays with wide-angle scanning performance[D]. Chengdu: University of Electronic Science and Technology of China, 2018
    [2] Anderson J, Zaghloul A. Wide-angle scan of linear arrays[C]//IEEE Antennas and Propagation Society International Symposium. 1978: 174-177.
    [3] 肖绍球, 柏艳英, 王秉中, 等. 基于方向图可重构天线的新型宽角度扫描相控阵[J]. 微波学报, 2010, 23(9):113-115. (Xiao Shaoqiu, Bai Yanying, Wang Binzhong, et al. Novel phased array with wide-angle scanning ability using pattern reconfigurable antenna[J]. Journal of Microwaves, 2010, 23(9): 113-115
    [4] 鲁耀兵, 戴开良, 陈燕. 宽带宽角扫描相控阵雷达技术研究[J]. 系统工程与电子技术, 2004, 26(3):288-290. (Lu Yaobing, Dai Kailiang, Chen Yan. Research of wideband and wide scan phased radar technology[J]. Systems Engineering and Electronics, 2004, 26(3): 288-290 doi: 10.3321/j.issn:1001-506X.2004.03.002
    [5] 柏艳英. 方向图可重构天线单元及其在阵列中的应用研究[D]. 成都: 电子科技大学, 2012: 1-11.

    Bai Yanying. Researches on pattern reconfigurable antenna element and its application in phased array[D]. Chengdu: University of Electronic Science and Technology of China, 2012: 1-11
    [6] 丁霄. 基于方向图可重构技术的相控阵大角度扫描特性研究[D]. 成都: 电子科技大学, 2013: 3-6.

    Ding Xiao. Research on the performance of wide-angle scanning phased array based on pattern reconfigurable technology[D]. Chengdu: University of Electronic Science and Technology of China, 2013: 3-6
    [7] Haupt R L. Thinned arrays using genetic algorithms[J]. IEEE Trans Antennas and Propagation, 1994, 42(7): 993-999. doi: 10.1109/8.299602
    [8] Cen L, Yu Z L, Ser W, et al. Linear aperiodic array synthesis using an improved genetic algorithm[J]. IEEE Trans Antennas and Propagation, 2012, 60(2): 895-902. doi: 10.1109/TAP.2011.2173111
    [9] Deligkaris K V, Zahari Z D, Kampitaki D G, et al. Thinned planar array design using Boolean PSO with velocity mutation[J]. IEEE Trans Magnetics, 2009, 45(3): 1490-1493. doi: 10.1109/TMAG.2009.2012687
    [10] Keizer W P M N. Linear array thinning using iterative FFT techniques[J]. IEEE Trans Antennas and Propagation, 2008, 56(8): 2757-2760. doi: 10.1109/TAP.2008.927580
    [11] Keizer W P M N. Large planar array thinning using iterative FFT techniques[J]. IEEE Trans Antennas and Propagation, 2009, 57(10): 3359-3362. doi: 10.1109/TAP.2009.2029382
    [12] Plessis W P D. Weighted thinned linear array design with the iterative FFT technique[J]. IEEE Trans Antennas and Propagation, 2011, 59(9): 3473-3477. doi: 10.1109/TAP.2011.2161450
    [13] Keizer W P M N. Amplitude-only low sidelobe synthesis for large thinned circular array antennas[J]. IEEE Trans Antennas and Propagation, 2012, 60(2): 1157-1161. doi: 10.1109/TAP.2011.2173119
    [14] Wang X K, Jiao Y C, Tan Y Y. Synthesis of large thinned planar arrays using a modified iterative Fourier technique[J]. IEEE Trans Antennas and Propagation, 2014, 62(4): 1564-1571. doi: 10.1109/TAP.2014.2302836
    [15] Kelley D F, Stutzman W L. Array antenna pattern modeling methods that include mutual coupling effects[J]. IEEE Trans Antennas and Propagation, 1993, 41(12): 1625-1632. doi: 10.1109/8.273305
    [16] Pozar D M. The active element pattern[J]. IEEE Trans Antennas and Propagation, 1994, 42(8): 1176-1178. doi: 10.1109/8.310010
    [17] 何庆强. 共形辐射单元及共形阵列研究[D]. 成都: 电子科技大学, 2008.

    He Qingqiang. Researches on conformal radiating elements and array antennas. Chengdu: University of Electronic Science and Technology of China, 2008
    [18] 徐小龙. 基于傅立叶级数和有源单元方向图的圆柱面共形阵列研究[C]//2015年全国微波毫米波会议论文集. 2015: 1-4.

    Xu Xiaolong. Research on cylindrical conformal array with Fourier series and AEP technique[C]//2015 Microwave Wireless Industry Exhibition in China. 2015: 1-4
    [19] Wang R, Wang B Z, Ding X, et al. Planar phased array with wide-angle scanning performance based on image theory[J]. IEEE Trans Antennas and Propagation, 2015, 63(9): 3908-3917. doi: 10.1109/TAP.2015.2446999
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1253
  • HTML全文浏览量:  455
  • PDF下载量:  38
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-13
  • 修回日期:  2020-03-30
  • 刊出日期:  2020-05-12

目录

    /

    返回文章
    返回