留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
毕碧, 周维民, 单连强, 等. 皮秒短脉冲X射线背光诊断快点火靶丸压缩面密度[J]. 强激光与粒子束, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
引用本文: 毕碧, 周维民, 单连强, 等. 皮秒短脉冲X射线背光诊断快点火靶丸压缩面密度[J]. 强激光与粒子束, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050
Citation: Bi Bi, Zhou Weimin, Shan Lianqiang, et al. Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression[J]. High Power Laser and Particle Beams, 2020, 32: 042001. doi: 10.11884/HPLPB202032.200050

皮秒短脉冲X射线背光诊断快点火靶丸压缩面密度

doi: 10.11884/HPLPB202032.200050
基金项目: 国家自然科学基金项目(11875048,11775202);科学挑战专题项目(TZ2018005)
详细信息
    作者简介:

    毕 碧(1985—),女,博士,助研,从事快点火物理研究;angela-023@163.com

    通讯作者:

    周维民(1978—),男,博士,研究员,从事高能量密度物理研究;zhouwm@caep.cn

    谷渝秋(1968—),男,研究员,从事高能量密度物理研究;yqgu@caep.cn

  • 中图分类号: O536

Density diagnosis based on ps-duration-pulse X-ray backlighting for fast ignition compression

  • 摘要: 为了给快点火集成耦合效率的计算提供关键参数,并为后期高密度压缩奠定高能背光的诊断基础,在神光-Ⅱ升级装置上利用皮秒短脉冲激光驱动产生了X射线背光源,测量了成像分辨率、光通量,获得了短脉冲背光源的辐射特性,进一步成功演示了基于这种短脉冲背光照相技术的间接驱动快点火预压缩密度诊断。实验所得图像与模拟图像结构一致,实测压缩过程中的面密度达到50 mg/cm2。实验还发现了压缩不对称引起的流体不稳定性特征,为后续实验提供了改进方向。
  • 图  1  实验排布

    Figure  1.  Experimental setup

    图  2  神光-II升级皮秒激光实测焦斑,10%(白线)50%(黑线)峰值强度等高线

    Figure  2.  Measured laser spot of ps laser at SG-II-updated facility,10%(white line) and 50%(black line)level contour of peak intensity

    图  3  静态背光图像和成像分辨率

    Figure  3.  Statical backlight image, improved image and calculation result

    图  4  内爆压缩结果

    Figure  4.  Implosion compression results

  • [1] Tabak M, Hammer J, Glinsky M E, et al. Ignition and high gain with ultrapowerful lasers[J]. Phys Plasmas, 1994, 1(5): 1626-1634. doi: 10.1063/1.870664
    [2] Kodama R, Norreys P A, Mima K, et al. Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition[J]. Nature, 2001, 412(6849): 798-802. doi: 10.1038/35090525
    [3] 谷渝秋, 张锋, 单连强, 等. 神光II升级装置锥壳靶间接驱动快点火集成实验[J]. 强激光与粒子束, 2015, 27:110101. (Gu Yuqiu, Zhang Feng, Shan Lianqiang, et al. Initial indirect cone-in-shell fast ignition integrated experiment on Shenguang II-updated facility[J]. High Power Laser and Particle Beams, 2015, 27: 110101 doi: 10.11884/HPLPB201527.110101
    [4] Jarrott L C, Wei M S, McGuffey C, et al. Visualizing fast electron energy transport into laser-compressed high density fast ignition targets[J]. Nature Physics, 2016, 12: 499-504. doi: 10.1038/nphys3614
    [5] Theobald W, Solodov A A, Stoeckl C, et al. Initial cone-in-shell fast ignition experiments on OMEGA[J]. Phys Plasmas, 2011, 18: 056305. doi: 10.1063/1.3566082
    [6] Stephens R B, Hatchett S P, Turner R E, et al. Implosion of indirectly driven reentrant-cone shell target[J]. Phys Rev Lett, 2003, 91(18): 185001. doi: 10.1103/PhysRevLett.91.185001
    [7] Tanaka K A, Kodama R, Mima K, et al. Basic and integrated studies for fast ignition[J]. Phys Plasmas, 2003, 10(5): 1925-1930. doi: 10.1063/1.1567722
    [8] Stephens R B, Hatchett S P, Tabak M, et al. Implosion hydrodynamics of fast ignition targets[J]. Phys Plasmas, 2005, 12(5): 056312. doi: 10.1063/1.1896952
    [9] Betti R, Zhou C. High-density and high-ρR fuel assembly for fast-ignition inertial confinement fusion[J]. Phys Plasmas, 2005, 12(11): 110702. doi: 10.1063/1.2127932
    [10] Zhou C D, Theobald W, Betti R, et al. High-ρR implosions for fast-ignition fuel assembly[J]. Phys Rev Lett, 2007, 98(2): 025004. doi: 10.1103/PhysRevLett.98.025004
    [11] 周维民, 单连强, 吴俊峰, 等. 间接驱动快点火锥壳靶锥体材料燃料混合问题研究[J]. 强激光与粒子束, 2015, 27:032017. (Zhou Weimin, Shan Lianqiang, Wu Junfeng, et al. Material mixing of cone-in-shell targets for indirect-drive fast ignition[J]. High Power Laser and Particle Beams, 2015, 27: 032017 doi: 10.11884/HPLPB201527.032017
    [12] He X T, Cai H B, Wu S Z, et al. Physical studies of fast ignition in China[J]. Plasma Physics and Controlled Fusion, 2015, 57: 064003. doi: 10.1088/0741-3335/57/6/064003
    [13] 毕碧, 单连强, 周维民, 等. 快点火锥壳靶内爆自发光图像数据处理[J]. 强激光与粒子束, 2014, 26:092002. (Bi Bi, Shan Lianqiang, Zhou Weimin, et al. Implosion emission image processing for cone-shell target of fast ignition[J]. High Power Laser and Particle Beams, 2014, 26: 092002 doi: 10.11884/HPLPB201426.092002
    [14] Theobald W, Solodov A A, Stoeckl C, et al. Time-resolved compression of a capsule with a cone to high density for fast-ignition laser fusion[J]. Nature Communications, 2014, 5: 5785. doi: 10.1038/ncomms6785
    [15] Yi S Z, Zhang Z, Huang Q S, et al. Eight-channel Kirkpatrick-Baez microscope for multiframe X-ray imaging diagnostics in laser plasma experiments[J]. Review of Scientific Instruments, 2016, 87: 103501. doi: 10.1063/1.4963702
  • 加载中
图(4)
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  306
  • PDF下载量:  80
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-19
  • 修回日期:  2020-03-11
  • 刊出日期:  2020-03-06

目录

    /

    返回文章
    返回