留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于薄层单元与弹簧单元的滚动直线导轨副动力学建模

陈学前 沈展鹏 鄂林仲阳 范宣华

陈学前, 沈展鹏, 鄂林仲阳, 等. 基于薄层单元与弹簧单元的滚动直线导轨副动力学建模[J]. 强激光与粒子束, 2020, 32: 072001. doi: 10.11884/HPLPB202032.200069
引用本文: 陈学前, 沈展鹏, 鄂林仲阳, 等. 基于薄层单元与弹簧单元的滚动直线导轨副动力学建模[J]. 强激光与粒子束, 2020, 32: 072001. doi: 10.11884/HPLPB202032.200069
Chen Xueqian, Shen Zhanpeng, Elin Zhongyang, et al. Dynamic modeling on a linear rolling guide based on thin layer element and spring element[J]. High Power Laser and Particle Beams, 2020, 32: 072001. doi: 10.11884/HPLPB202032.200069
Citation: Chen Xueqian, Shen Zhanpeng, Elin Zhongyang, et al. Dynamic modeling on a linear rolling guide based on thin layer element and spring element[J]. High Power Laser and Particle Beams, 2020, 32: 072001. doi: 10.11884/HPLPB202032.200069

基于薄层单元与弹簧单元的滚动直线导轨副动力学建模

doi: 10.11884/HPLPB202032.200069
基金项目: 国家自然科学基金项目(11872059);中国工程物理研究院统筹规划项目(TCGH0406)
详细信息
    作者简介:

    陈学前(1975—),男,硕士,从事结构动力学分析与模型V&V研究;chenxq@caep.cn

    通讯作者:

    范宣华(1981—),男,博士,博士生导师,主要从事结构动力学研究;fanxh@caep.cn

  • 中图分类号: TB535

Dynamic modeling on a linear rolling guide based on thin layer element and spring element

  • 摘要: 针对某大型光机装置中使用的LM型直线导轨-滑块的结合面,采用薄层单元与弹簧单元模拟其接触面,建立了大行程传输结构模拟件的有限元模型。通过模型修正方法,根据模态试验结果对薄层单元弹性模量以及弹簧刚度进行了识别。模型修正后,结构前三阶模态频率计算结果与试验结果最大差别为2.23%,地脉动载荷下各测点位移响应计算结果与试验结果最大差别为7.61%。计算结果与试验结果具有较好的一致性,验证了模型的有效性。
  • 图  1  大行程传输机构模拟件结构有限元模型

    Figure  1.  FE model of the transmission mechanism with a long stroke

    图  2  大行程传输机构模拟件模态试验示意图

    Figure  2.  Sketch map of the modal experiment on the transmission mechanism with a long stroke

    图  3  大行程传输机构模拟件微振动试验示意图

    Figure  3.  Sketch map of the micro-vibration experiment on the transmission mechanism with a long stroke

    图  4  微振动试验测点布局示意图

    Figure  4.  Sketch map of the measured points on the micro-vibration experiment

    图  5  地脉动加速度功率谱密度曲线

    Figure  5.  Acceleration PSD curve of the ambient vibration

    图  6  结构一阶模态振型

    Figure  6.  The first-order mode shape of the structure

    图  7  结构二阶模态振型

    Figure  7.  The second-order mode shape of the structure

    图  8  结构三阶模态振型

    Figure  8.  The third-order mode shape of the structure

    图  9  结构位移响应云图(m)

    Figure  9.  Displacement response contour of the structure

    表  1  大行程传输机构模拟件模态试验结果

    Table  1.   Modal experimental results of the transmission mechanism with a long stroke

    rankfrequency/Hzmodal damping ratio/%modal shape
    113.050.54vertical rocking
    214.780.66horizontal rocking
    324.2018.87translating along with the guide
    下载: 导出CSV

    表  2  微振动测试结果

    Table  2.   Results on the micro-vibration experiment

    measured point No.12345
    displacement/10−2μm1.842.062.693.5613.01
    下载: 导出CSV

    表  3  结构前三阶模态频率计算结果与试验结果比较

    Table  3.   Comparison on the first three natural frequencies between simulation and experiment

    rankexperimental result/Hzinitial result/Hzerror/%updated result/Hzerror/%
    1 13.05 16.92 29.63 13.33 2.15
    2 14.78 17.42 17.86 14.45 −2.23
    3 24.20 18.49 −23.60 24.28 0.33
    下载: 导出CSV

    表  4  测点合位移计算结果与试验结果比较

    Table  4.   Comparison on the resultant displacement between simulation and experiment

    measured point
    No.
    experimental result/
    10−2μm
    simulating result/
    10−2μm
    error/%
    1 1.84 1.98 7.61
    2 2.06 2.08 0.97
    3 2.69 2.62 −2.60
    4 3.56 3.59 0.84
    5 13.01 13.91 6.92
    下载: 导出CSV
  • [1] 屈重年, 伍良生, 肖毅川, 等. 机床导轨技术研究综述[J]. 制造技术与机床, 2012(1):31-36. (Qu Chongnian, Wu Liangsheng, Xiao Yichuan, et al. Summary of guide way technology research on machine tools[J]. Manufacturing Technology & Machine Tool, 2012(1): 31-36
    [2] Zhang G P, Huang Y M, Shi W H, et al. Predicting dynamic behaviors of a whole machine tool structure based on computer-aided engineering[J]. International Journal of Machine Tools and Manufacture, 2003, 43(7): 699-706. doi: 10.1016/S0890-6955(03)00026-9
    [3] Wu J S S, Chang J C, Hung J P. The effect of contact interface on dynamic characteristics of composite structures[J]. Mathematics and Computers in Simulation, 2007, 74(6): 454-467. doi: 10.1016/j.matcom.2006.07.003
    [4] Wu J S S, Chang J C, Tsai G A, et al. The effect of bending loads on the dynamic behaviors of a rolling guide[J]. Journal of Mechanical Science and Technology, 2012, 26(3): 671-680. doi: 10.1007/s12206-011-1228-8
    [5] Hung J P. Load effect on the vibration characteristics of a stage with rolling guides[J]. Journal of Mechanical Science and Technology, 2009, 23(1): 89-99. doi: 10.1007/s12206-008-0925-4
    [6] 蒋书运, 祝书龙. 带滚珠丝杠副的直线导轨结合部动态刚度特性[J]. 机械工程学报, 2010, 46(1):92-99. (Jiang Shuyun, Zhu Shulong. Dynamic characteristic parameters of linear guide way joint with ball screw[J]. Journal of Mechanical Engineering, 2010, 46(1): 92-99 doi: 10.3901/JME.2010.01.092
    [7] 孙伟, 孔祥希, 汪博, 等. 直线滚动导轨的 Hertz 接触建模及接触刚度的理论求解[J]. 工程力学, 2013, 30(7):230-234. (Sun Wei, Kong Xiangxi, Wang Bo, et al. Contact modeling and analytical solution of contact stiffness by Hertz theory for the linear rolling guide system[J]. Engineering Mechanics, 2013, 30(7): 230-234
    [8] 王民, 乐兵兵, 裴二阳. 基于Hertz 接触的滚珠直线导轨副接触刚度建模与分析[J]. 北京工业大学学报, 2015, 41(8):1128-1133. (Wang Min, Le Bingbing, Pei Eryang. Contact stiffness modeling and analysis of linear ball guides based on Hertz contact theory[J]. Journal of Beijing University of Technology, 2015, 41(8): 1128-1133
    [9] 张巍, 王民, 孙乐乐. 考虑预紧力和接触角变化的直线滚动导轨副刚度建模与分析[J]. 北京工业大学学报, 2018, 44(1):56-63. (Zhang Wei, Wang Min, Sun Lele. Stiffness modeling and analysis considering influences of preload and contact angle of a linear rolling guide[J]. Journal of Beijing University of Technology, 2018, 44(1): 56-63
    [10] Wang J H. Experimental identification of mechanical joint parameters[J]. Journal of Vibration and Acoustics, 1991, 113: 28-36. doi: 10.1115/1.2930151
    [11] Ohta H, Hayashi E. Vibration of linear guide way type recirculating linear ball bearing[J]. Journal of Sound and Vibration, 2000, 235(5): 847-861. doi: 10.1006/jsvi.2000.2950
    [12] 张宇, 廖伯瑜. 机床结合部参数的有效识别方法[J]. 昆明理工大学学报, 1998, 23(2):36-41. (Zhang Yu, Liao Boyu. The efficient identification method of joint parameters of machine tools[J]. Journal of Kunming University of Science and Technology, 1998, 23(2): 36-41
    [13] 毛宽民, 邢满禧, 李斌, 等. 滚动直线导轨副可动结合部动力学建模[J]. 华中科技大学学报:自然科学版, 2016, 44(7):81-85. (Mao Kuanmin, Xing Manxi, Li Bin, et al. Dynamic modeling for movable joint of rolling linear guide[J]. Journal of Huazhong University of Science & Technology (Natural Science Edition), 2016, 44(7): 81-85
    [14] 田红亮, 刘芙蓉, 方子帆, 等. 引入各向同性虚拟材料的固定结合部模型[J]. 振动工程学报, 2013, 26(4):561-573. (Tian Hongliang, Liu Furong, Fang Zifan, et al. Immovable joint surface’s model using isotropic virtual material[J]. Journal of Vibration Engineering, 2013, 26(4): 561-573 doi: 10.3969/j.issn.1004-4523.2013.04.013
    [15] 张学良, 范世荣, 温淑花, 等. 基于等效横观各向同性虚拟材料的固定结合部建模方法[J]. 机械工程学报, 2017, 53(15):141-147. (Zhang Xueliang, Fan Shirong, Wen Shuhua, et al. Modeling method of fixed joint interfaces equivalent transversely isotropic virtual material[J]. Journal of Mechanical Engineering, 2017, 53(15): 141-147 doi: 10.3901/JME.2017.15.141
    [16] Tabatabaie M, Sommer S C. Analysis of soil-structure interaction due to ambient vibration[R]. UCRL-JC-130342, 1998.
    [17] 陈学前, 徐元利. 柔性基础对ICF装置稳定性的影响[J]. 强激光与粒子束, 2011, 23(6):1569-1573. (Chen Xueqian, Xu Yuanli. Studying on the influence of flexible foundation on the stability of ICF facility[J]. High Power Laser and Particle Beams, 2011, 23(6): 1569-1573 doi: 10.3788/HPLPB20112306.1569
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  1243
  • HTML全文浏览量:  509
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-04-21
  • 刊出日期:  2020-06-24

目录

    /

    返回文章
    返回