留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分布式阻抗末端加载的TEM喇叭天线设计

原艳宁 冯强 易超龙 席晓莉

原艳宁, 冯强, 易超龙, 等. 分布式阻抗末端加载的TEM喇叭天线设计[J]. 强激光与粒子束, 2021, 33: 023005. doi: 10.11884/HPLPB202133.200198
引用本文: 原艳宁, 冯强, 易超龙, 等. 分布式阻抗末端加载的TEM喇叭天线设计[J]. 强激光与粒子束, 2021, 33: 023005. doi: 10.11884/HPLPB202133.200198
Yuan Yanning, Feng Qiang, Yi Chaolong, et al. Design of TEM horn antenna based on distributed impedance end-loading[J]. High Power Laser and Particle Beams, 2021, 33: 023005. doi: 10.11884/HPLPB202133.200198
Citation: Yuan Yanning, Feng Qiang, Yi Chaolong, et al. Design of TEM horn antenna based on distributed impedance end-loading[J]. High Power Laser and Particle Beams, 2021, 33: 023005. doi: 10.11884/HPLPB202133.200198

分布式阻抗末端加载的TEM喇叭天线设计

doi: 10.11884/HPLPB202133.200198
基金项目: 高功率微波技术重点实验室基金项目
详细信息
    作者简介:

    原艳宁(1982—),女,博士,工程师,从事超宽带天线及射频电路研究;yyn1982@126.com

    通讯作者:

    席晓莉(1967—),女,博士,教授/博士生导师,从事天线设计、电波传播及先进导航与电磁技术研究;xixiaoli@xaut.edu.cn

  • 中图分类号: TN823

Design of TEM horn antenna based on distributed impedance end-loading

  • 摘要: 基于功率容量和口径匹配扩展低频工作带宽两方面的考虑,设计了一种具有分布式阻抗末端加载结构的超宽带TEM喇叭天线。首先,对渐变式同轴-平板的巴伦结构进行了优化设计,扩展了馈电结构的工作带宽,提高了馈电效率;其次,对指数型TEM喇叭天线末端进行了分布式阻抗的匹配设计,其端口特性和辐射特性均得到了明显改善,并采用功率方向图和能量方向图对天线的辐射效果进行评估。实验结果表明,相对于指数型TEM喇叭天线,加载分布式阻抗匹配末端结构后,天线低频带宽展宽了330 MHz,天线主轴辐射电场峰峰值提高了10%,馈电效率提高了17%。
  • 图  1  传统渐变式巴伦结构

    Figure  1.  Traditional graded balun

    图  2  改进渐变式巴伦结构

    Figure  2.  Improved graded balun

    图  3  三种天线结构要素图

    Figure  3.  Structural elements of three antennas

    图  4  巴伦结构的端口参数

    Figure  4.  Port parameters of the balun structures

    图  5  三种天线驻波比

    Figure  5.  VSWR of three antennas

    图  6  天线时域辐射波形和辐射场频谱

    Figure  6.  Antenna time-domain radiation waveform and radiation field spectrum

    图  7  三种天线功率方向图对比

    Figure  7.  Comparison of the power patterns of three antennas

    图  8  三种天线能量方向图对比

    Figure  8.  Comparison of the energy patterns of three antennas

    表  1  天线尺寸与工作频率对比

    Table  1.   Comparison of antenna size and operating frequency

    antenna${L_{\max }}$/cm${{{L_{\max }}} / {{\lambda _L}}}$bandwidth/GHzVSWR
    Valentine antenna[1]1231.24[0.3, 2]2
    Chebyshev tapered TEM horn antenna[6]750.56[0.224, 3]2
    double-ridged TEM horn antenna[7]500.38[0.23, 2]3
    combined dipole antenna [12]500.367[0.22, 5]2
    antenna1600.928[0.464, 1]2
    antenna266.70.525[0.236, 1]2
    antenna366.70.296[0.133, 1]2
    下载: 导出CSV

    表  2  天线性能比较

    Table  2.   Comparison of antenna performance

    antennaH/cm×W/cm${t_{p - p}}$/ns${E_{p - p}}$/(V·m−1)${{\rm{G}}_{{\rm{ep}}}}$/dB${\eta _{{\rm{feed}}}}$/%
    antenna140×400.661.080.8755.59
    antenna266.7×400.831.120.7772.27
    antenna366.7×400.831.190.8672.75
    下载: 导出CSV
  • [1] 毕岚, 薛谦忠, 席宝坤. 新型超宽带TEM脉冲辐射天线的设计与分析[J]. 微波学报, 2017, 33:78-81. (Bi Lan, Xue Qianzhong, Xi Baokun. Design of a novel ultra-wideband TEM antenna for high-power pulse radiation[J]. Journal of Microwaves, 2017, 33: 78-81
    [2] 余世里. 高功率微波武器效应及防护[J]. 微波学报, 2014:147-150. (Yu Shili. High power microwave weapons effect and hardening[J]. Journal of Microwaves, 2014: 147-150
    [3] Salari M A, Manoochehri O, Darvazehban A, et al. An active 20 MHz to 2.5 GHz UWB receiver antenna system using a TEM horn[J]. IEEE Antennas Wirel Propag Lett, 2017, 16: 2432-2435. doi: 10.1109/LAWP.2017.2723318
    [4] Chung K, Pyun S, Choi J. Design of an ultrawide-band TEM horn antenna with a microstrip-type balun[J]. IEEE Trans Antennas Propag, 2005, 53(10): 3410-3413. doi: 10.1109/TAP.2005.856396
    [5] Chen Y G, Wang Y, Wang Q G. A new type of TEM horn antenna for high-altitude electromagnetic pulse simulator[J]. IEEE Antennas Wirel Propag Lett, 2013, 12: 1021-1024. doi: 10.1109/LAWP.2013.2278202
    [6] 易超龙, 樊亚军, 石磊, 等. 高功率超宽带馈源设计与实验[J]. 强激光与粒子束, 2016, 28:033001. (Yi Chaolong, Fan Yajun, Shi Lei, et al. Design and experiment of high-power ultra-wideband feed[J]. High Power Laser and Particle Beams, 2016, 28: 033001 doi: 10.11884/HPLPB201628.033001
    [7] Cui H J, Fu Q, Xu J, et al. Modified Luneburg lens antenna in low frequency range[C]//IEEE International Conference on Communication Problem-Solving (ICCP).2015: 623-626.
    [8] Zhu X Q, Chen W Q, Chen Z G, et al. Analysis of TEM horn with dielectric loaded[C]//2018 IEEE International Conference on Computational Electromagnetics (ICCEM). 2018: 1-3.
    [9] Kanda M. The effects of resistive loading of “TEM” horns[J]. IEEE Trans Electromag Compat, 1982, 24(2): 245-255.
    [10] Elmansouri M A, Filipovic D S. Miniaturization of TEM horn using spherical modes engineering[J]. IEEE Trans Antennas Propag, 2016, 64(12): 5064-5073. doi: 10.1109/TAP.2016.2620485
    [11] Wang S F, Xie Y Z H, Gao M X, et al. Optimizing high-power ultra-wideband combined antennas for maximum radiation within finite aperture area[J]. IEEE Trans Antennas Propag, 2019, 67(2): 834-842. doi: 10.1109/TAP.2018.2882615
    [12] 谢平, 廖勇, 徐刚. 组合振子天线磁偶特性实验研究[J]. 强激光与粒子束, 2014, 26:073217. (Xie Ping, Liao Yong, Xu Gang. Experimental research on magnetic dipole characteristic of combined antenna[J]. High Power Laser and Particle Beams, 2014, 26: 073217 doi: 10.11884/HPLPB201426.073217
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  1400
  • HTML全文浏览量:  452
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-09-07
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回