留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电磁波在非均匀碰撞等离子体中的透射增强效应

聂勇 闫二艳 杨浩 黄诺慈 陈志国 郑强林 鲍向阳 胡海鹰

聂勇, 闫二艳, 杨浩, 等. 电磁波在非均匀碰撞等离子体中的透射增强效应[J]. 强激光与粒子束, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233
引用本文: 聂勇, 闫二艳, 杨浩, 等. 电磁波在非均匀碰撞等离子体中的透射增强效应[J]. 强激光与粒子束, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233
Nie Yong, Yan Eryan, Yang Hao, et al. Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma[J]. High Power Laser and Particle Beams, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233
Citation: Nie Yong, Yan Eryan, Yang Hao, et al. Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma[J]. High Power Laser and Particle Beams, 2021, 33: 023003. doi: 10.11884/HPLPB202133.200233

电磁波在非均匀碰撞等离子体中的透射增强效应

doi: 10.11884/HPLPB202133.200233
基金项目: 高功率微波技术重点实验室基金项目(JCKYS2018212036)
详细信息
    作者简介:

    聂 勇(1996—),男,硕士研究生,从事高功率微波与物质相互作用研究;nyong2020@163.com

    通讯作者:

    闫二艳(1978—),女,副研究员,主要从事HPM等离子体相关技术研究;yaneryan_2002@163.com

  • 中图分类号: O451

Transmission enhancement effect of electromagnetic wave in non-uniform collisional plasma

  • 摘要: 为研究碰撞等离子体对电磁波传输性质的影响,基于电磁波在介质中的传输特性,将等离子体作为一种特殊的介质,针对一定实验条件下的高功率微波(HPM)大气等离子体与一定范围电磁波的透射特性开展了实验、理论及仿真研究。研究发现:S波段HPM在50 Pa真空下形成的等离子体对不同频率的电磁波透射特性具有较大影响,且在一定频率范围内有规律地出现电磁波透射信号增强效应现象;获取了一系列不同频率连续电磁波穿过HPM等离子体区域的透射波形,并对波形进行了归一化处理,在32.4 GHz下,连续电磁波穿过有无等离子体区域的透射系数约有2倍的差异。建立了仿真模型,获得31.5~32.5 GHz范围内透射系数分布曲线图,穿过等离子体的电磁波出现透射增强效应,且在某些频点上出现了约1.9倍的透射增强。该研究成果为HPM大气等离子体在隐身、应急通讯、黑障通讯等方面的应用提供了重要的技术支撑。
  • 图  1  实验装置简图

    Figure  1.  Sketch of the experimental device

    图  2  实验现场图

    Figure  2.  Pictures of experimental site

    图  3  实验测得32.4 GHz透射波形

    Figure  3.  Experimentally measured 32.4 GHz transmission waveform

    图  4  31.5~32.5 GHz连续波透射信号归一化曲线

    Figure  4.  Normalized curves of 31.5~32.5 GHz continuous wave transmission signals

    图  5  实验平台等效图

    Figure  5.  Equivalent diagrams of experimental platform

    图  6  电磁波透射仿真模型示意图

    Figure  6.  Schematic diagrams of electromagnetic wave transmission simulation model

    图  7  有无等离子体的透射系数曲线对比

    Figure  7.  Comparison of transmission coefficient curves with and without plasma

    图  8  有无等离子体归一化透射系数

    Figure  8.  Normalized transmission coefficient with or without plasma

  • [1] 王家胜, 杨显强, 经姚翔, 等. 钝头型航天器再入通信黑障及对策研究[J]. 航天器工程, 2014, 23(1):6-16. (Wang Jiasheng, Yang Xianqiang, Jing Yaoxiang, et al. On the communication blackout during reentry of blunt-nosed spacecraft and its eliminating approaches[J]. Spacecraft Engineering, 2014, 23(1): 6-16 doi: 10.3969/j.issn.1673-8748.2014.01.002
    [2] 王志斌, 孔繁荣, 鄂鹏, 等. 再入航天器表面亚波长等离子体薄层对微波信号影响效应研究[J]. 中国空间科学技术, 2017, 37(1):111-116. (Wang Zhibin, Kong Fanrong, E Peng, et al. Dumping effect of microwave signal in plasma slabs with sub-wavelength characteristics around spacecraft[J]. Chinese Space Science and Technology, 2017, 37(1): 111-116
    [3] 闫二艳, 杨浩, 郑强林, 等. 瞬变等离子体微波诊断初步研究[J]. 强激光与粒子束, 2019, 31:103207. (Yan Eryan, Yang Hao, Zheng Qianglin, et al. Principium study of the microwave diagnostics for transient temperature plasma[J]. High Power Laser and Particle Beams, 2019, 31: 103207 doi: 10.11884/HPLPB201931.190175
    [4] 杨浩, 闫二艳, 郑强林, 等. 临近空间高功率微波辐照放电试验技术[J]. 强激光与粒子束, 2019, 31:103216. (Yang Hao, Yan Eryan, Zheng Qianglin, et al. Examination research of high power microwave irradiation discharge in near space[J]. High Power Laser and Particle Beams, 2019, 31: 103216 doi: 10.11884/HPLPB201931.190151
    [5] Vidmar R J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers[J]. IEEE Trans Plasma Science, 1990, 18(4): 733-741. doi: 10.1109/27.57528
    [6] Gregoire D J, Santoru J, Schumacher R W. Electromagnetic-wave propagation in unmagnetized plasmas[R]. AD-A250710, 1992.
    [7] Laroussi M. Scattering of electromagnetic waves by a layer of air plasma surrounding a conducting cylinder[J]. International Journal of Infrared & Millimeter Waves, 1996, 17(12): 2215-2232.
    [8] Laroussi M, Roth J R. Numerical calculation of the reflection, absorption, and transmission of microwaves by a nonuniform plasma slab[J]. IEEE Trans Plasma Science, 2002, 21(4): 366-372.
    [9] Kalluri D K, Lee J H, Ehsan M M. FDTD simulation of electromagnetic pulse interaction with a switched plasma slab[J]. International Journal of Infrared & Millimeter Waves, 2003, 24(3): 349-365.
    [10] Kim H C, Verboncoeur J P. Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab[J]. Computer Physics Communications, 2007, 177(1): 118-121.
    [11] Samimi A, Simpson J J. An efficient 3-D FDTD model of electromagnetic wave propagation in magnetized plasma[J]. IEEE Trans Antennas & Propagation, 2014, 63(1): 269-279.
    [12] Soliman E A, Helaly A, Megahed A A. Propagation of electromagnetic waves in planar bounded plasma region[J]. Prog Electromagn Res, 2007, 67: 25-37. doi: 10.2528/PIER06071102
    [13] Gürel C S, Öncü E. Frequency selective characteristics of a plasma layer with sinusoidally-varying electron density profile[J]. Journal of Infrared Millimeter & Terahertz Waves, 2009, 30(6): 589-597.
    [14] Zhang Shu, Hu Xiwei, Jiang Zhonghe, et al. Propagation of an electromagnetic wave in an atmospheric pressure plasma: Numerical solutions[J]. Physics of Plasmas, 2006, 13(1): 2618-2630.
    [15] Yuan Chengxun, Zhou Zhongxiang, Zhang Jingwen, et al. Propagation of terahertz waves in an atmospheric pressure microplasma with Epstein electron density profile[J]. Journal of Applied Physics, 2011, 109(6): 1189.
    [16] Hu Binjie, Wei Guang, Lai Shengli. SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab[J]. IEEE Trans Plasma Science, 1999, 27(4): 1131-1136. doi: 10.1109/27.782293
    [17] Kong X K, Yang H W, Liu S B, et al. Research on the reflection, absorption and transmission of electromagnetic waves for inhomogeneous magnetized plasma[C]//International Conference on Microwave and Millimeter Wave Technology. 2008.
    [18] 赵朋程, 郭立新, 李慧敏. 110 GHz高功率微波在大气击穿等离子体中的传输、反射和吸收[J]. 电波科学学报, 2016, 31(3):512-515. (Zhao Pengcheng, Guo Lixin, Li Huiming. Transmission, reflection and absorption of 110 GHz high-power microwave in air breakdown plasma[J]. Chinese Journal of Radio Science, 2016, 31(3): 512-515
    [19] 周前红, 董志伟, 陈京元. 110 GHz 微波电离大气产生等离子体过程的理论研究[J]. 物理学报, 2011, 60(12):349-360. (Zhou Qianhong, Dong Zhiwei, Chen Jingyuan. Modeling of plasma pattern formation in 110 GHz microwave air breakdown[J]. Acta Physica Sinica, 2011, 60(12): 349-360
    [20] Destler W W, Degrange J E, Fleischmann H H, et al. Experimental studies of high-power microwave reflection, transmission, and absorption from a plasma-covered plane conducting boundary[J]. Journal of Applied Physics, 1991, 69(9): 6313-6318. doi: 10.1063/1.348829
    [21] Koretzky E, Kuo S P. Characterization of an atmospheric pressure plasma generated by a plasma torch array[J]. Physics of Plasmas, 1998, 5(10): 3774-3780. doi: 10.1063/1.872741
    [22] 马平, 曾学军, 石安华, 等. 电磁波在等离子体高温气体中传输特性实验研究[J]. 实验流体力学, 2010, 24(5):51-56. (Ma Ping, Zeng Xuejun, Shi Anhua, et al. Experimental investigation on electromagnetic wave transmission characteristic in the plasma high temperature gas[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(5): 51-56 doi: 10.3969/j.issn.1672-9897.2010.05.011
    [23] 郑灵, 赵青, 罗先刚, 等. 等离子体中电磁波传输特性理论和实验研究[J]. 物理学报, 2012, 61(15):343-349. (Zheng Ling, Zhao Qing, Luo Xiangang, et al. Theoretical and experimental studies of electromagnetic wave transmission in plasma[J]. Acta Physica Sinica, 2012, 61(15): 343-349
    [24] 刘新芽. 电磁波在多层介质内的透射[J]. 光学学报, 1995, 15(1):122-125. (Liu Xinya. The transmisson of electromagnetic waves in multilayer media[J]. Acta Opticia Sinica, 1995, 15(1): 122-125 doi: 10.3321/j.issn:0253-2239.1995.01.025
    [25] 周琦, 刘新芽. 多层介质中电磁波的反射与透射[J]. 南昌大学学报(理科版), 2003, 23(1):37-44. (Zhou Qi, Liu Xinya. The reflection and transmission of electromagnetic wave in multilayer media[J]. Journal of Nanchang University(Natural Science), 2003, 23(1): 37-44
    [26] 江遴汉, 张祖荣. 电磁波在均匀薄膜上的反射和透射[J]. 物理与工程, 2014(s2):9-12. (Jiang Linhan, Zhang Zurong. Reflection and transmission of electromagnetic wave on uniform film[J]. Physics and Engineering, 2014(s2): 9-12
    [27] Epstein P S. Reflection of waves in an inhomogeneous absorbing medium[J]. Proc NaR Acad Sci Wash, 1930, 16(10): 627-637. doi: 10.1073/pnas.16.10.627
  • 加载中
图(8)
计量
  • 文章访问数:  849
  • HTML全文浏览量:  175
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-07
  • 修回日期:  2020-11-12
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回