留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于横向热流抑制的半导体激光芯片封装实验研究

谢鹏飞 雷军 吕文强 高松信 王昭 曹礼强 王丞乾

谢鹏飞, 雷军, 吕文强, 等. 基于横向热流抑制的半导体激光芯片封装实验研究[J]. 强激光与粒子束, 2021, 33: 021003. doi: 10.11884/HPLPB202133.200241
引用本文: 谢鹏飞, 雷军, 吕文强, 等. 基于横向热流抑制的半导体激光芯片封装实验研究[J]. 强激光与粒子束, 2021, 33: 021003. doi: 10.11884/HPLPB202133.200241
Xie Pengfei, Lei Jun, Lü Wenqiang, et al. Experimental investigation of the package of diode laser chip based on lateral heat flow suppression[J]. High Power Laser and Particle Beams, 2021, 33: 021003. doi: 10.11884/HPLPB202133.200241
Citation: Xie Pengfei, Lei Jun, Lü Wenqiang, et al. Experimental investigation of the package of diode laser chip based on lateral heat flow suppression[J]. High Power Laser and Particle Beams, 2021, 33: 021003. doi: 10.11884/HPLPB202133.200241

基于横向热流抑制的半导体激光芯片封装实验研究

doi: 10.11884/HPLPB202133.200241
基金项目: 国家重点研发计划项目(2018YFB1107302)
详细信息
    作者简介:

    谢鹏飞(1994—),男,硕士研究生,主要从事半导体激光器封装技术研究;xiepgf@126.com

  • 中图分类号: TN248.4

Experimental investigation of the package of diode laser chip based on lateral heat flow suppression

  • 摘要: 为降低半导体激光芯片的慢轴远场发散角,提高其慢轴方向的光束质量,设计了横向热流抑制的封装结构。利用热沉间的物理隔离,削弱了半导体激光芯片慢轴方向上的温度梯度,有效降低了半导体激光芯片慢轴方向的发散角。采用热分析模拟了不同封装结构下芯片发光区的温度分布,并对波长915 nm的窄条宽半导体激光芯片进行封装。实验结果表明,在工作电流15 A,封装在隔离槽长4 mm,脊宽120 μm刻槽热沉上的芯片,其慢轴远场发散角由12.25°降低至10.49°,相应的光参量积(BPP)由5.344 mm·mrad 降低至4.5763 mm·mrad,慢轴方向亮度提升了约5.5%。实验结果表明,横向热流抑制的封装结构可以有效地削弱半导体激光芯片慢轴方向上由热透镜效应引起的高阶模激射,从而降低其慢轴远场发散角。
  • 图  1  基于横向热流抑制技术的COS热沉结构示意图

    Figure  1.  Schematic diagram of a chip-on-submount (COS) structure based on lateral heat flow suppression technology

    图  2  传统COS封装结构中芯片慢轴方向温度分布

    Figure  2.  Temperature distribution of normal package structure along slow axis

    图  3  采用横向热流抑制技术后的芯片慢轴方向温度分布

    Figure  3.  Temperature distribution of lateral heat flow suppression package structure along slow axis

    图  4  超快激光加工的隔离槽

    Figure  4.  The isolated trough manufactured by ultrafast laser (a) before and (b) after cleaning

    图  5  烧结后的单管芯片

    Figure  5.  Semiconductor laser chip sealed by lateral heat flow suppression technology

    图  6  连续工作条件下不同封装结构的芯片光电性能(a)输出功率(b)电光转换效率

    Figure  6.  Photoelectric performances between lateral heat flow suppression and normal package: (a) output, (b) EO efficiency

    图  7  不同电流下两种封装结构的波长变化

    Figure  7.  Wavelength of lateral heat flow suppression and normal package with different current

    图  8  不同电流下的慢轴发散角(a)和(b)不同封装结构下的慢轴发散角

    Figure  8.  Slow axis divergence angle with different current (a) and slow axis divergence angle in different package (b)

    表  1  不同电流下横向热流抑制封装结构的慢轴发散角数值

    Table  1.   The value of slow axis divergence angle in different current

    current/Aslow axis divergence angle/(°)current/Aslow axis divergence angle/(°)
    1 4.48 11 15.01
    7 17.04 13 12.00
    9 15.95 15 10.49
    下载: 导出CSV
  • [1] 王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1):1-19. (Wang Lijun, Ning Yongqiang, Qin Li, et al. Development of high power diode laser[J]. Chin J Lumin, 2015, 36(1): 1-19
    [2] 海一娜, 邹永刚, 田锟, 等. 水平腔面发射半导体激光器研究进展[J]. 中国光学, 2017, 10(2):194-206. (Hai Yina, Zou Yonggang, Tian Kun, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206 doi: 10.3788/co.20171002.0194
    [3] 王立军, 彭航宇, 张俊, 等. 高功率高亮度半导体激光器合束进展[J]. 红外与激光工程, 2017, 46(4):8-17. (Wang Lijun, Peng Hangyu, Zhang Jun, et al. Development of beam combining of high power high brightness diode lasers[J]. Infrared and Laser Engineering, 2017, 46(4): 8-17
    [4] 王立军, 彭航宇, 顾媛媛, 等. 半导体激光在加工中的应用[J]. 红外与激光工程, 2006, 35(S):310-313. (Wang Lijun, Peng Hangyu, Gu Yuanyuan, et al. Applications of laser diode in processing[J]. Infrared and Laser Engineering, 2006, 35(S): 310-313 doi: 10.3969/j.issn.1007-2276.2006.01.027
    [5] Bai J G, Leisher P, Zhang Shiguo, et al. Mitigation of thermal lensing effect as a brightness limitation of high power broad area diode lasers[C]//Proc of SPIE. 2011: 79531F.
    [6] Winterfeldt M, Crump P, Knigge S, et al. High beam quality in broad area lasers via suppression of lateral carrier accumulation[J]. IEEE Photonics Technology Letters, 2015, 27(17): 1809-1812. doi: 10.1109/LPT.2015.2443186
    [7] Sun Wenyang, Pathak R, Campbell G, et al. Higher brightness laser diodes with smaller slow axis divergence[C]//Proc of SPIE. 2013: 86050D.
    [8] Zhao Biyao, Jing Hongqi, Zhong Li, et al. Improving slow axis beam quality of 808nm broad area laser diodes with adiabatic package[J]. Chin J Lumin, 2019, 40(11): 1417-1427.
    [9] 井红旗, 仲莉, 倪羽茜, 等. 高功率密度激光二极管叠层散热结构的热分析[J]. 发光学报, 2016, 37(1):81-87. (Jing Hongqi, Zhong Li, Ni Yuxi, et al. Thermal analysis of high power density laser diode stack cooling structure[J]. Chin J Lumin, 2016, 37(1): 81-87 doi: 10.3788/fgxb20163701.0081
    [10] 宋健, 高欣, 闫宏宇, 等. 大功率半导体激光器波导热透镜效应及对慢轴光束发散角的影响[J]. 中国激光, 2018, 45(10):211-217. (Song Jian, Gao Xin, Yan Hongyu, et al. Thermal lens effect of high power semiconductor laser waveguide and its influence on beam divergence angle of slow axis[J]. Chinese Journal of Lasers, 2018, 45(10): 211-217
    [11] 戴玮, 李嘉强, 曹剑, 等. CVD金刚石热沉封装高功率半导体激光器的热特性[J]. 光电子·激光, 2019, 30(3):5-11. (Dai Wei, Li Jiaqiang, Cao Jian, et al. Thermal performance of high power semiconductor lasers packaged on CVD diamond heat sink[J]. Journal of Opto-electronics·Laser, 2019, 30(3): 5-11
    [12] 房俊宇, 石琳琳, 张贺, 等. 石墨片作辅助热沉的高功率半导体激光器热传导特性[J]. 发光学报, 2019, 40(7):907-915. (Fang Junyu, Shi Linlin, Zhang He, et al. Heat transfer characteristics of high power semiconductor laser with graphite sheet as auxiliary heat sink[J]. Chin J Lumin, 2019, 40(7): 907-915 doi: 10.3788/fgxb20194007.0907
    [13] Kondow M, Kitatani T, Nakahara K, et al. Temperature dependence of lasing wavelength in a GaInAs laser diode[J]. IEEE Photonics Technology Letters, 2000, 12(7): 777-779. doi: 10.1109/68.853497
    [14] 李成仁, 宋昌烈, 李淑凤, 等. 半导体激光器输出波长随工作电流变化的实验研究[J]. 红外与激光工程, 2003, 32(2):144-147. (Li Chengren, Song Changlie, Li Shufeng, et al. Experimental investigation of the change of semiconductor laser output wavelength corresponding to operation current[J]. Infrared and Laser Engineering, 2003, 32(2): 144-147 doi: 10.3969/j.issn.1007-2276.2003.02.010
    [15] 王涛. 高功率宽区半导体激光器侧向光束质量控制研究[D]. 北京: 中国科学院大学.

    Wang Tao. Research on the lateral beam quality of high power broad-area diode lasers[D]. Beijing: Chinese Academy of Sciences.
    [16] Tsang J W T. The effects of lateral current spreading, carrier out-diffusion, and optical mode losses on the threshold current density of GaAs-AlxGa1−xAs stripe-geometry DH lasers[J]. Appl Phys, 1978, 49(3): 1031-1044. doi: 10.1063/1.325040
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  1014
  • HTML全文浏览量:  314
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-18
  • 修回日期:  2020-11-02
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回