留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

格雷码与六步相移编码融合的三维结构光学测量方法

孙帮勇 吴思远

孙帮勇, 吴思远. 格雷码与六步相移编码融合的三维结构光学测量方法[J]. 强激光与粒子束, 2021, 33: 021004. doi: 10.11884/HPLPB202133.200242
引用本文: 孙帮勇, 吴思远. 格雷码与六步相移编码融合的三维结构光学测量方法[J]. 强激光与粒子束, 2021, 33: 021004. doi: 10.11884/HPLPB202133.200242
Sun Bangyong, Wu Siyuan. Structured light technology based on gray code and six-step phase shift method[J]. High Power Laser and Particle Beams, 2021, 33: 021004. doi: 10.11884/HPLPB202133.200242
Citation: Sun Bangyong, Wu Siyuan. Structured light technology based on gray code and six-step phase shift method[J]. High Power Laser and Particle Beams, 2021, 33: 021004. doi: 10.11884/HPLPB202133.200242

格雷码与六步相移编码融合的三维结构光学测量方法

doi: 10.11884/HPLPB202133.200242
基金项目: 国家自然科学基金项目(62076199);中国科学院光谱成像技术重点实验室基金项目(LSIT201801D)
详细信息
    作者简介:

    孙帮勇(1980—),男,博士,副教授,从事多光谱成像技术研究;sunbangyong@xaut.edu.cn

    吴思远(1991—),男,硕士,工程师,从事结构光学设计与测量研究;wusiyuan@opt.ac.cn

  • 中图分类号: O439

Structured light technology based on gray code and six-step phase shift method

  • 摘要: 编码结构光技术是一种获取复杂目标三维结构的典型测量技术,其将编码后的结构光图案投射到待测物体表面进行调制、采集,并通过解码计算三维面形数据,可见编码方法是结构光三维测量技术的核心问题。然而,通用的格雷码编码方法和六步相移编码方法都存在一定缺陷,为此,以获取物体的高精度三维点云数据为目标,提出了一种融合格雷码与六步相移的结构光技术。首先,将格雷码结构光设计为7幅黑白相间的条纹周期图像,并通过投射角度解码操作将图像划分为多个区域;然后,设计六步相移结构光为6幅具有相位差的余弦周期图像,通过相位解包裹操作将每个子区域细分到单个像素单元;最后,融合以上两种编码结构光解码值,计算图像内每个空间点的绝对相位信息。仿真实验与实际测试实验显示,与传统六幅莫尔条纹结构光技术相比,融合结构光技术计算量较小,同时也克服了单独使用格雷码或相移技术所存在的问题,能够以较高精度获取物体目标的三维结构细节,为基于结构光的双目三维扫描系统提供一定理论依据。
  • 图  1  基于结构光的双目三维扫描设备示意图

    Figure  1.  Binocular three-dimensional scanning instrument based on structured light

    图  2  格雷码结构光示意图

    Figure  2.  Structured light images based on Gray code

    图  3  格雷码编码结构光图案从左至右依次为第一幅,第二幅,…,第七幅编码图像

    Figure  3.  The structured light based on Gray code. From left to right are the first,second,...,seventh coded image

    图  4  局部阈值的选取示意图

    Figure  4.  Schematic diagram of local threshold selection

    图  5  六步相移结构光图像第一行的像素值规律图,图像I0的像素值周期规律对应I0曲线,依次类推

    Figure  5.  Schematic diagram of the pixel value rule of the structured light image based on six-step phase shift method

    图  6  格雷编码仿真解码图,图像被划分为128个区域

    Figure  6.  Gray coding simulation decoding diagram. The image is divided into 128 areas

    图  7  六步相移结构光仿真解码图

    Figure  7.  Decoding diagram of the structured light based on six-step phase-shift simulation

    图  8  格雷编码实际应用中的解码结果图

    Figure  8.  Picture of the decoding result in the actual application of Gray coding

    图  9  六步相移结构光实际应用中的解码结果图

    Figure  9.  Picture of decoding result in practical application of six-step phase shift structured light

    图  10  物体三维结构扫描结果对比图

    Figure  10.  Comparison of scanning results of three-dimensional structure of objects

    图  11  不同物体的三维结构扫描结果图

    Figure  11.  Scanning results of three-dimensional structures of different objects

  • [1] Wilm J, Olesen O V, Larsen R. SLStudio: Open-source framework for real-time structured light[C]//IEEE International Conference on Image Processing Theory. 2014: 1-4.
    [2] Gu Q, Herakleous K, Poullis C. 3DUNDERWORLD-SLS: An open-source structured-light scanning system for rapid geometry acquisition[J]. EprintArxiv, 2014.
    [3] Scharstein D, Szeliski R. High-accuracy stereo depth maps using structured light[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2003: 1-1.
    [4] Zhang Q, Su X, Xiang L, et al. 3-D shape measurement based on complementary Gray-code light[J]. Optics and Lasers in Engineering, 2012, 50(4): 574-579.
    [5] Sansoni G, Carocci M, Rodella R. Three-dimensional vision based on a combination of gray-code and phase-shift light projection: analysis and compensation of the systematic errors[J]. Appl Opt, 1999, 38(31): 6565-6573.
    [6] Lin H, Ma Z F, Yao C H, et al. 3D measurement technology based on binocular vision using a combination of gray code and phase-shift structured light[J]. Acta Electronica Sinica, 2013, 41(1): 24-28.
    [7] Xi Juntong. Phase error compensation method using smoothing spline approximation for a three-dimensional shape measurement system based on gray-code and phase-shift light projection[J]. Optical Engineering, 2008, 47(11): 1273-1279.
    [8] Yu Xiaoyang, Wu Haibin, Yin Liping. 3D measurement technology based on structured light by combining Gray code with phase-shift[J]. Chinese Journal of Scientific Instrument, 2007, 28(12): 2152.
    [9] Veksler, O. Stereo correspondence by dynamic programming on a tree[C]//IEEE Conference on Computer Vision and Pattern Recognition. 2005.
    [10] Gimel"Farb G. Probabilistic regularisation and symmetry in binocular dynamic programming stereo[J]. Pattern Recognition Letters, 2002, 23(4): 431-442.
    [11] Wang L, Liao M, Gong M, et al. High-quality real-time stereo using adaptive cost aggregation and dynamic programming[C]//International Symposium on 3D Data Processing, Visualization and Transmission. 2006: 798-805.
    [12] 敖黎铭, 徐晓, 李熙. 双目结构光高精度三维复原算法的快速实现[J]. 传感器与微系统, 2018, 316(6):134-136. (Ao Liming, Xu Xiao, Li Xi. Fast implementation of high precision 3D restoration algorithm based on binocular structured light[J]. Transducer and Microsystem Technology, 2018, 316(6): 134-136
    [13] 王长波, 谢明红. 格雷编码与相移结合的双目三维重构[J]. 计算机工程, 2013, 39(5):178-182. (Wang Changbo, Xie Minghong. Binocular three-dimension reconstruction combined with Gray coding and phase-shift[J]. Computer engineering, 2013, 39(5): 178-182 doi: 10.3969/j.issn.1000-3428.2013.05.039
    [14] 张广军, 王红. 结构光三维视觉系统研究[J]. 航空学报, 1999, 20(4):365-367. (Zhang Guangjun, Wang Hong. Structured light 3D vision[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(4): 365-367 doi: 10.3321/j.issn:1000-6893.1999.04.019
  • 加载中
图(11)
计量
  • 文章访问数:  2055
  • HTML全文浏览量:  453
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-19
  • 修回日期:  2020-12-18
  • 刊出日期:  2021-01-07

目录

    /

    返回文章
    返回